onsemi Confidential

Ezairo® 8300 Software Development Kit Getting
Started Guide

M-20865-013
February 2025

© SC'LLC’ 2025 O n S e I I l ‘
Previous Edition © 2023 ™

"All Rights Reserved"

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table of Contents

Page

Ezairo® 8300 Software Development Kit Getting Started Guide. 1
Table 0f CONteNtS. L 2

L. IntrodUC i ON. L 5
Ll PUIPOS. - . 5
1.2 Intended AUAICNCE. 5
1.3 COMVENLIONS.ottt et e e et e e e e e e e e e 5
1.4 Further Reading. 5
B O 5 4 1A 6
2.1 High-Level OVerview. il 6
2.2 FALUTES. . . .ottt et 6
3. Design Information. 8
3.1 Programming the Ezairo 8300 System. 8
3.1.1 Partitioning Algorithms, .. 9
3.1.2 Other Design Considerations. 11

3.2 Data FloW. ..o 14
4. Connecting Hardware and Installing Software 18
4.1 Connecting the Hardware. . .. 18
4.1.1 Hardware Prerequisites. e 18
4.1.2 Connecting the Board. 18

4.2 Software PrerequiSites. oo 20
4.3 Installing the Software. 20
4.3.1 Using the ide.json File. i 20

4.4 Preparing the System to Build Source Code with the ASIP Designer toolchain..........................__. 21
5. Introduction to Sample Applications. i 24

www.onsemi.com

2

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

5.1 Accessing the Sample Applications. 24
5.1.1 IDE Method #1: Importing sample applications through the Sample Code Explorer......._........... 24
5.1.2 IDE Method #2: Creating a new sample from a template 25
5.1.3 IDE Method #3: Importing a sample code application as an existing project........................... 25

5.2 Code Structure and General Information. 25
5.2.1 Shared Data Elements.o i e 26

6. Working with Sample Applications. L 27

6.1 Starting the Ezairo 8300 SDK .. 27

6.2 CFX Assembler Sample Application. 27
6.2.1 Importing and Building the CFX Assembler Sample Project......... 27
6.2.2 Debugging the CFX Sample Code. 28

6.2.2.1 Changing CTK Configuration for CFX Debugging 28
6.2.2.2 Debugging the CFX with SEGGER J-Link 28

6.3 CFX C Sample Application. L 34
6.3.1 Importing and Building the CFX C Sample Project. 34
6.3.2 Debugging CFX C Sample Code. 35
6.3.3 CFX Debug Troubleshooting 35

6.4 Arm Cortex-M3 Processor Sample Application. 37
6.4.1 Importing and Building an Arm Cortex-M3 Processor Sample Project..............................._._. 37
6.4.2 Debugging Arm Cortex-M3 Processor Sample Code.................. 38

7. More Information. . 44

7.1 Where to Find Documentation. o 44
7.1.1 Finding HTML Documentation. oot 44
7.1.2 Finding PDF Documentation. 44
7.1.3 Finding the Information You Need. 44
7.1.4 Publicly-Available Documentation. 44

www.onsemi.com

3

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

7.2 Documentation Roadmap. il 45
7.2.1 Overview Documentation. 45
7.2.2 CEX Documentation. 46
7.2.3 Amm Cortex-M3 Processor Documentation. i oo, 50
7.2.4 LPDSP32 Documentation. 52
7.2.5 HEAR Documentation. iiiiiiiiiiil. 55
7.2.6 Filter Engine Documentation. 56
7.2.7 Neural Network Accelerator Documentation. i i, 56
7.2.8 Documentation for Other Hardware Elements. 57
7.2.9 NVM Support Documentation. 57
7.2.10 Communications Support Documentation......... 57

www.onsemi.com

4

onsemi Confidential

CHAPTER 1

Introduction

1.1 PURPOSE

IMPORTANT: onsemi acknowledges that this document might contain the inappropriate terms “white list",
"master" and "slave”. We have a plan to work with other companies to identify an industry wide solution
that can eradicate non-inclusive terminology but maintains the technical relationship of the original wording.
Once new terminologies are agreed upon, future products will contain new terminology.

This group of topics describes how to begin using the Ezairo 8300 Software Development Kit (SDK). It
provides the prerequisites and instructions necessary to install the relevant software, connect the hardware, and
develop applications for Ezairo 8300 using the Synopsys® ASIP Designer™ toolchain. Sample applications are
included for introduction and practice purposes.

NOTE: Ifyou are a developer who is moving from using other onsemi Ezairo products to working
with Ezairo 8300, consult Ezairo 8300 for Users of Other Ezairo Products for additional
important information.

1.2 INTENDED AUDIENCE

This group of topics is for software developers who are designing and implementing Ezairo 8300 applications.
1.3 CONVENTIONS

The following conventions are used in this group of topics to signify particular types of information:

monospace font
Macros, functions, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets>
Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

1.4 FURTHER READING

For more information about Ezairo 8300, refer to the following documents:

* Ezairo 8300 Hardware Reference

* Ezairo 8300 Firmware Reference

* Introduction to Ezairo 8300 Programming

* Ezairo 8300 Evaluation and Development Board Manual
* Ezairo 8300 Datasheet

www.onsemi.com

5

onsemi Confidential

CHAPTER 2

Overview

Ezairo 8300 is an open-programmable DSP-based System-on-Chip (SoC) specifically designed for use in ultra-
low-power high-performance portable audio devices.

Ezairo 8300 includes five programmable or semi-programmable processing cores, providing a high degree of
parallelism and flexibility:

¢ The CFX processor is an open-programmable dual-Harvard 24-bit digital signal processor (DSP), providing
support for any type of audio signal processing.

¢ The HEAR configurable accelerator core is optimized for pre-programmed functions that are frequently
needed in audio signal processing.

* The Filter Engine allows time domain filtering and supports an ultra-low-delay audio path.

* The Am® Cortex®-M3 core functions as the system master.

¢ The LPDSP32 is an open-programmable dual-Harvard 32-bit DSP.

2.1 HIGH-LEVEL OVERVIEW

Each of the Ezairo 8300°s programmable cores has a separate toolchain which is integrated in the SDK.
Section 4.4 “Preparing the System to Build Source Code with the ASIP Designer toolchain” on page 21 contains
more information about the ASIP Designer toolchain for the CFX as a starting point. Information about the other
toolchains, and more information about the CFX toolchain, can be found in the relevant sections of related
documentation.

For a comprehensive index of documentation included with the SDK, see Section 7 “More Information” on
page 44.

2.2 FEATURES

Ezairo 8300 includes the following features:

* Four ADCs with signal detection mode and 2 direct digital output drivers, with high quality and ultra-low
power performances

¢ Peripherals and interfaces needed to make it a complete hardware platform, when combined with non-volatile
memory, wireless transceivers or multiple sensors

* A neural network accelerator that allows the Ezairo 8300 to perform neural network computations in a highly
efficient and flexible way

The architecture of the Ezairo 8300 is shown in the figure "Ezairo 8300 Architecture Overview" (Figure 1).

www.onsemi.com

6

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Input Stage :‘!‘lﬂm

TWEH-;

On-Chip
Peripherals ARM® Cortex™-M3 CFX

Terayn
© prodscon

Figure 1. Ezairo 8300 Architecture Overview

www.onsemi.com

7

onsemi Confidential

CHAPTER 3

Design Information

For all new users of Ezairo 8300, the following sections provide design recommendations to make efficient use
of the chip’s resources from a programmer’s perspective.

NOTE: When compared with Ezairo 7100, the Ezairo 8300 device includes an additional core (the
LPDSP32 DSP), allows the Arm Cortex-M3 processor to be the system master, and includes
several new blocks and capabilities. For more information on the architecture updates included
in Ezairo 8300, refer to Chapter | “Architecture Overview” on page 1.

3.1 PROGRAMMING THE EZAIRO 8300 SYSTEM

Optimum power efficiency is achieved by using all cores equally, or load-balancing. Aside from external
components connected to Ezairo 8300 (such as a wireless chip), the amount of power consumed is primarily
determined by the system clock frequency; so if work is evenly divided among all cores, you can reduce the overall
clock frequency, consuming less power. The figure "A Conceptual Illustration of Load-Balancing" (Figure 2) is an
illustration of this concept for a simple case with a dual-core system.

Since the programmable cores have their own strengths besides sharing certain common capabilities, you can
take apart your algorithm and assign different portions of it to run on different cores (called algorithm partitioning).
If your algorithm requires a low-delay path, use the Filter Engine to construct this low-delay path first. If you need
wireless communication, use the Arm Cortex-M3 core to enable the wireless audio functionality. It is also generally
desirable to use the Arm Cortex-M3 core to handle tasks not essential to the audio processing, so that you can leave
the CFX and the HEAR to focus on the heavy processing that they are best at. We recommend that the vectorized,
number-crunching portions run on the HEAR, and that other signal processing tasks run on the CFX or the
LPDSP32. Being a 32-bit processor (rather than a 24-bit processor like the CFX), the LPDSP32 is ideally suited for
implementing codecs that might need to share data with the Arm Cortex-M3 core connected to a wireless chip. The
LPDSP32 is linked closely in the system with the Neural Network Accelerator (NNA), and could therefore be a
logical choice for performing other signal processing tasks related to deep learning applications. Algorithm
partitioning is key to optimizing the power efficiency of programs running on Ezairo 8300, as well as to taking
advantage of the specialties of each of the programmable cores in the Ezairo 8300 system.

www.onsemi.com

8

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Balancing the load on
each core allows us to
reduce the system clock,
which reduces power
consumption

Power

System Clock i
Consumption

CFX Core HEAR Core

I Unbalanced Load

Balanced Load

Figure 2. A Conceptual lllustration of Load-Balancing

3.1.1 Partitioning Algorithms

Partitioning the algorithms for Ezairo 8300 is somewhat related to task scheduling for multiprocessor systems, a
topic that has been studied extensively in the field of multiprocessor computing. This section describes a few key
concepts that are useful to developers working on partitioning algorithms for Ezairo 8300.

The guidelines for partitioning algorithms for Ezairo 8300 are:

* Make each core do what it does best, and what no other core can do.
* Schedule tasks among the programmable cores so that the workload is distributed among them as evenly as

possible.

Following these two guidelines, when analyzing an algorithm for partitioning, it is important to consider the
algorithm from two perspectives: function, and timing.

Functional partitions
Divide the algorithm based on the type of operations (or functions) that need to be run.

Timing partitions
Divide the algorithm based on when the parts of the algorithm needs to be run, and how often and

how quickly they need to be completed.

www.onsemi.com

9

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

When analyzing your algorithm from the functional perspective, keep in mind several important factors, which
are described below.

Sometimes certain tasks must be assigned to a particular core, because either this core is the only one to perform
them, or no other core would be nearly as efficient even if it could perform them. For example, if your algorithm
requires a low-delay path, you must configure the Filter Engine to establish it. If you need to use a CVSD codec, the
Arm Cortex-M3 core hardware-based CVSD codec would be the natural choice.

The HEAR is typically more power-efficient than the CFX in running the functions provided by the microcode
modules. If the cycle count for a given task is about the same on both cores, the HEAR is still likely to be more
power-efficient. Therefore it is usually better to partition your algorithm in such a way that you can utilize the
functions available from the HEAR and not duplicate the same functions on the CFX. See the HEAR Configurable
Accelerator Reference Manual for the complete description of the available microcode modules.

The communication scheme between the CFX, the IOC, and the HEAR is presented in the table "HEAR Inter-
Processor Communication" (Table 1). You can start a function chain from a CFX command or a FIFO interrupt, and
you can configure each interrupt from the HEAR to the CFX at various points within a function chain. For example,
if a function chain contains an FIR filter function followed by a filterbank analysis function, you can configure the
HEAR to raise an interrupt on the CFX after the FIR filter function has completed, and raise another interrupt after
the filterbank analysis function has completed.

Table 1. HEAR Inter-Processor Communication

From To Number of Interrupts
HEAR CFX/Arm Cortex-M3 core | 8
CFX/Arm Cortex-M3 core | HEAR 8
FIFO HEAR 8

The communication scheme between the CFX, the IOC, the LPDSP32, and the Arm Cortex-M3 core is presented
in the table "Inter-Core Communication" (Table 2). There are several ways of using interrupts. For instance, you can
start an audio encoding process on the Arm Cortex-M3 core as soon as an input FIFO is full. As another example,
the Arm Cortex-M3 core can raise an interrupt on the CFX when a particular function has completed.

Table 2. Inter-Core Communication

Arm Cortex-M3 core | LPDSP32

From To Number of Interrupts
Arm Cortex-M3 Core | CFX 8
CFX Arm Cortex-M3 Core | 8
FIFO Arm Cortex-M3 Core | 8
FIFO CFX 8
6
8

LPDSP32 Arm Cortex-M3 core

Use the CFX and the Arm Cortex-M3 core to handle initialization and control of all peripherals and external
interfaces on Ezairo 8300.

There are also timing considerations when analyzing your algorithm:

www.onsemi.com

10

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

For algorithms that require a low-delay path (LDP), ensure that a new output sample in the LDP is available at
its sampling rate to maintain the continuity of the audio output. For example, if the system clock, and therefore the
Filter Engine clock, is at 2.56 MHz, and the sampling rate of the LDP is 128 kHz, then you have a maximum of 20
cycles to complete any processing for each new sample. Typically, the CFX processing is not a part of the LDP. If
you must use the CFX in the LDP, use caution and ensure that the timing constraint of the LDP is met.

For algorithms that operate at the decimated sampling rate, you need to ensure that a new block of audio data is
available at the block rate to maintain the continuity of the audio output. Thus, the critical path of your task
schedule is typically constrained by the block rate. The block rate is calculated as the sampling frequency divided
by the input block size. For example, a 16 kHz sampling frequency divided by a block size of eight samples equals
2 kHz, meaning that a new block of audio data must be available every 0.5 ms.

Time-slicing is a technique for partitioning your algorithm over the time dimension, to free up clock cycles for
the most critical computations. It involves spreading parts of your algorithms over several blocks instead of having
all the computations done within one block. For example, in a dynamic range compression algorithm, instead of
calculating new compression gains for all 16 frequency bands within one block, time-slicing divides up the
algorithm so that only the compression gains for bands 1-4 are calculated in the first block, then only the gains for
bands 5-8 are calculated in the next block, and so forth. This way, the algorithm is partitioned so that it only needs
to calculate the compression gains for 4 frequency bands at a time.

Implementing time-slicing might compromise the performance of your algorithm if it is not implemented in a
way that accounts for the different sample rates needed.

NOTE: The multi-rate signal processing capability of the Filter Engine means that it can offer
convenient time-slicing. For tasks that run at a decimated rate (as compared to the highest
sampling rate for the root program sector), you can spread them across multiple program
phases. Consult the Filter Engine Reference Manual for the concepts of multi-rate processing,
program phase, and program sector.

Either a command from the CFX or an event from the FIFO controller can launch a function chain on the
HEAR. It is therefore important to consider the flow of the data in your algorithm, to see if the FIFO controller
should directly launch a function chain on the HEAR while the CFX is running other computations.

For those tasks that run on the Arm Cortex-M3 core, we recommend taking advantage of any available DMA
channels for data transfers. If all four DMA channels have been used, you can reconfigure some or all of them at run-
time. This might be power-efficient if the program overhead associated with DMA run-time reconfiguration is less
than the computation cycles that manual data transfers would cost.

3.1.2 Other Design Considerations

Designing an audio processing system usually involves trade-offs between power consumption, circuit size, and
noise, as illustrated in the figure "Trade-offs Between Power, Size and Noise when Designing an Audio System"
(Figure 3). A lower noise level implies a higher RMS current and more filtering, typically on the power supply,
which requires more space.

www.onsemi.com

1

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Smaller size 4
- Increased noise
- Reduced power

b Size

Less noise Less power .
- Increased power - Increased noise
- Larger size

Power

Noise

Figure 3. Trade-offs Between Power, Size and Noise when Designing an Audio System

In an audio processing system that emphasizes low power consumption and small circuit size, one way in which
noise could be induced is to periodically vary the dynamic current drawn by a processor, and to ensure that the
peak-to-peak level of that dynamic current is large enough. A tonal noise can be induced in the output signal
because of current coupling with the rest of the system.

For instance, for an unbalanced algorithm on Ezairo 7100, the HEAR might periodically draw a dynamic current
because it first runs the filterbank analysis function, then idles when the CFX processes the analysis results. After it
finishes processing, the HEAR runs more filterbank functions before idling again, and so on. If the HEAR and CFX
processors periodically operate and idle, the peak-to-peak level of the dynamic current drawn by the processors
might be very large, which can induce a tonal noise in the output signal. This is known as the block rate tone
problem.

Ezairo 8300 has much improved power management schemes to mitigate this problem, but its complete
elimination still requires careful load-balancing from your algorithm. With Ezairo 7100 you are encouraged to
evenly distribute the workload between the CFX and the HEAR (load-balancing). Similarly, the flexibility of the
Ezairo 8300 system allows you to implement efficient algorithm partitioning to evenly distribute the workload
among all the programmable processors, so that each processor is not periodically operating and idling. This means
that the peak-to-peak level of the dynamic current will be very small, and no tonal noise is induced. The figure "A
Conceptual Illustration of Producing Noise and Avoiding It " (Figure 4) illustrates the concept of implementing load
balancing to reduce the periodic peak-to-peak variations in the dynamic current.

www.onsemi.com

12

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Pattern of processor loads is
repeated for every block of input
data

100%
E\ Periodic Peak-
i rent | /. N to-peak
Dynamic CUrei=— ol
B N\ variations in

dynamic current
can induce noise

~

orloads | b

Progessor 025
Time ,
Processor operating and idling
100%

By spreading out
the processor
load evenly, no

4« noise will be

induced

Time
Processor operating continuously

Figure 4. A Conceptual lllustration of Producing Noise and Avoiding It

Implementing load-balancing on Ezairo 8300 allows you to optimize the trade-off between power consumption
and noise. It not only leads to lower dynamic power consumption, but it also causes lower average power draw,
while at the same time avoids inducing tonal noise. By reducing the peak-to-peak variations that require more milli-
Watts when a processor is operating in short bursts, you achieve the same results with continuous operation of the
processors. In effect, the same amount of work is done when all active processors are running continuously, but with
lower overall energy consumption.

NOTE: Load-balancing does not mean you have to use all the programmable cores. If a core is not in
use and is disabled, it does not consume power and does not induce noise.

www.onsemi.com

13

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

IMPORTANT: If you do not implement proper load-balancing, your program running on Ezairo 8300 can
induce tonal noise.

3.2 DATA FLOW

Ezairo 8300 features flexible data flow through the Input/Output Controller (IOC), the FIFO controller, the Filter
Engine for audio multiplexing, and the DMA controller on the Arm Cortex-M3 core, as shown in the figure
"Flexible Data Flow via the IOC and FIFO Controller" (Figure 5).

The IOC can be configured to automatically route data between the system memory on one side, and the
input/output stage and PCM interface on the other side. The FIFO controller supports up to 32 FIFOs that can be
configured to different sizes and locations within the system memory. If you are familiar with Ezairo 7100, you will
notice the increased number of FIFOs on Ezairo 8300.

Each of the FIFOs can be connected to one or more data sources or data sinks. A data source is something that
writes data into the FIFO, and a data sink reads data from the FIFO. For example, the input stage is a data source for
an input FIFO, whereas a PCM port can both receive and transmit data, so it can be both a data source and a data
sink. Moreover, a data source or sink is not required to be a physical interface connected to the IOC. For example,
an FIR filter running on the HEAR can be a data sink that reads from an input FIFO, while at the same time it can
be a data source for another FIFO. FIFOs that are connected to a physical interface through the IOC are called
hardware FIFOs. FIFOs that are controlled by the software on the CFX and HEAR are called software FIFOs (see
the figure "Comparing Hardware FIFOs to Software FIFOs" (Figure 6)). The IOC, CFX, HEAR and Arm Cortex-M3
core all have access to the FIFOs via the FIFO controller, which maintains a fixed access priority scheme. See the
Ezairo 8300 Hardware Reference for details about the IOC and FIFO controller, and also Section 1.1 “FIFO
Controller Input and Output Blocks” on page 1.

www.onsemi.com

14

Input
Stage

CFX

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

PCM

IF
£

Output
Stage

v

v

v

HEAR

I0C
FIFO Controller
A Config B Config
v v
FIFO FIFO
A Memo B Memory

Figure 5. Flexible Data Flow via the IOC and FIFO Controller

To design your algorithms to take advantage of the flexibility provided by the IOC and FIFO controller,
consider all the components that can be data sources, data sinks, or both. Configure the IOC and the FIFO controller
such that they connect the data sources and sinks to the FIFOs that you have specified. Access to the FIFOs from
within your program is straightforward—the FIFO controller handles all the pointer updates to the FIFOs, and
automatically maps the direct FIFO access to the appropriate location in the physical memory, so that your program
does not need to calculate new addresses due to data updates in the FIFOs. For example, an input FIFO can be
configured in such a way that the most recent block of data from the input stage is always located at the base of the
FIFO. Thus, an FIR filter that processes data from the input FIFO can simply start from the same memory address

every time a new block of data is available in the FIFO.

Arm
Cortex-M3
Core

www.onsemi.com

15

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Via
HEAR
nput | 19C | FIFO HEAR FIFO . To other
Stage AC O > FIR Filter > BO_©O > F|Iterba.nk > processing
Analysis
r L
) v
\ \
Hardware Software
FIFO FIFO

Figure 6. Comparing Hardware FIFOs to Software FIFOs

With audio multiplexing, you can route audio data through the Filter Engine for filtering and basic arithmetic
operations. Typical examples of Filter Engine configuration include:

¢ Low-delay path
* Audio pre-processing on the input
* Audio post-processing on the output

See the Ezairo 8300 Hardware Reference and Filter Engine Reference Manual for details about audio
multiplexing.

The DMA controller on the Arm Cortex-M3 processor has flexible addressing modes to enable you to efficiently
transfer data between Arm Cortex-M3 processor data memory (including the mapped HEAR FIFO memory) and
peripherals (see the figure "Flexible Data Flow Through the DMA Controller" (Figure 7)). The DMA controller
supports up to four independent channels and step sizes between -4 and 4. Each channel can be connected to one
data source and one data sink. A DMA data source or sink can be a data buffer in the Arm Cortex-M3 processor
memory map, or a peripheral such as the G.722 encoder or the SPI. See the Ezairo 8300 Hardware Reference for
more information about the DMA controller.

www.onsemi.com

16

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

DMA Controller

Channel 0 Channel 1

Channel 2 Channel 3

d 4
Arm Cortex-M3 Processor

Arm Cortex-M3 Peripherals and Interfaces
Processor Data
Memory ’c || Pcm || sPI || ECB || ACB

Figure 7. Flexible Data Flow Through the DMA Controller

www.onsemi.com

17

onsemi Confidential

CHAPTER 4

Connecting Hardware and Installing Software

This topic explains what you need for using the Ezairo 8300 SDK, how to connect the onsemi Evaluation and
Development Board, and how to install the necessary software before you begin working.

4.1 CONNECTING THE HARDWARE
4.1.1 Hardware Prerequisites

The following items are needed before you can make connections:

¢ Ezairo 8300 Evaluation and Development Board and a USB to Micro-USB cable

* A Binho Pulsar USB Host Adapter and its associated cables

* A computer running Windows

* A SEGGER J-Link™, if you are debugging the LPDSP32 processor

* A SEGGER J-Link device capable of running JFLASH, if you are accessing the NVM via the JLINK header

4.1.2 Connecting the Board

To connect the Evaluation and Development Board to a computer:

1. Check the jumper positions. The figure "Ezairo 8300 Evaluation and Development Board Diagram" (Figure
8), below, depicts the jumper positions necessary to power the Evaluation and Development Board from the
USB port and connect the Board to the Windows computer. The black rectangles in the diagram indicate the
required jumper positions.

NOTE: For the onboard flash (LE25S161) to work, the VDDO1-S header must be shorted across
only pins 7 and 8. This is because pins 1 and 2 use the Ezairo 8300's VDDIF regulator, and pins 3
and 4 use the EVB's 1.25 V regulator.

2. Ensure that the power switch (SW1) is in the ON position.

3. A connection to the EVB can be performed using the USB J-Link connection for Arm Cortex-M3 debugging,
I2C via the Pulsar DIN connector for CFX and Arm Cortex-M3 core programming, and via the JLINK pins for
LPDSP32 debugging.

www.onsemi.com

18

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

5 o0 ema 35 C16
e 1 —
1 19
1 -
= TONK cs ? IR
o]
u: | | | | | | |
=
U311
lw)
DA COMM-GND 25581 ED_\ Al A2 Al A
1D 2 i N] U3 MICS MIC2 MIC 1 MICO
—_— 1 s % [] cews [Jrcewe [|t cever []t cBvpo
— IS =
3 - U g DD-SEL + D + + +
N Ca1 C72 . c[.ln 1D5p| EN g — g g 8 —
1 = e C64|:||:| oo -1) 1
1) 0 0 a
]) - : 2 i 08
s AZH BIAS3 AIZH BIAS2Z AIMH BIAST AIDH BIASO
—— = [RA] S i i I [e A I |
SENSE —I ELL - = 2GHD AGND
!) =1 1 & = — - ;U
g
EXT-PSU [] D 2l
1v5 VMIC VREG DCBIAS h
N ot TR H] [i
1= 1S
poven FILTEND ok
= -]
+ VODO1-5 2y R4 BR5
DGND3 ¥DDO1 2 i [l1 ot nls D —
] ero o
1 7 coa
T [caaglg? — B R7 Re opo 8 I
YODOXS 8 O [CF12 = i
JRESET = cis op-| - =k
5v-SEL UART vDDo? 2 i 0 [ess RCVRO-36 =k
1 F U R - ! ml v |Bs —EE
— 1 wDOO3-5 7 ST =11
U10 = 20 o g
10 R33 o8 wDDO3 2 g we 0= S
R] cloCd — VBATOD 13
e 09 [v) TS [rewer ey Y
3 DBG-E vDDO4-5 o RB2RIDG =
D TERM 1 o M @]
|:| L3267 7 2 8 il il g =
R37 Casm caaq =TT ; , EXT-CLK 1] == e 3
s ol RIE el D3 RTT
R23
= 0= S T[] NRESET —
<
= w8
£0)
B0 fres 093 RCYR1-35 GNDOD
— =1) RESET .y
I [Jez ON Semiconductor
Ezairo 8300 Eval Board 1.1
I:I jeat R14
Q il &2 g & 2019-06-01 2 DGND4
_| oa P DIt DIOZ . DIO3 DID4
B2 mREE g 182 12 .0 12 12
\:| [=] 1 171 11 & 21 11
DGNDz U _20 2

Figure 8. Ezairo 8300 Evaluation and Development Board Diagram

4. Once the jumpers are in the right positions, you can plug the micro USB cable into the socket (J5) on the
board. The LED close to the USB connector flashes green when it is initially plugged in. After a second or
two, the green LED turns a steady green to show an established connection. If there are any communication
issues and the USB port cannot establish a connection with the Ezairo 8300, the LED flashes red instead of
green, and continues to flash. If this occurs, double check the jumper configuration and ensure that the ON-
OFF switch is set to ON.

5. To enable debugging of a CFX program, connect the cable from the Pulsar to the development board socket
J1. If you are only debugging a CFX program and not an Arm Cortex-M3 core program, it is also possible to
power the board from the Pulsar by moving the PSU_SEL jumper to the 3-4 position, and then the USB cable
is not required. More information about this can be found in the Ezairo 8300 Evaluation and Development
Board Manual.

www.onsemi.com

19

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

4.2 SOFTWARE PREREQUISITES

Ezairo 8300 SDK (available at www.onsemi.com)

The ASIP Programmer tools require the Visual C++ 2015 64-bit runtime be installed. If you do not have Visual
Studio or Visual C++ 2015 installed, you can download the runtime redistributable from the address below:

https://www.microsoft.com/en-us/download/confirmation.aspx?id=52685

NOTE: The ASIP Designer is a license based product which requires access to a license server. To
configure the license server location, use the User Setup.exe tool located in the following
directory, where <version> is the installed version number of the tool (e.g.: P-2019.03-SP2):

C:/Program Files (x86)/ON Semiconductor\Ezairo 8300 SDK\ASIP Programmer\<version>\win64\bin\WINbin
The recommended J-Link version to use with the Ezairo 8300 SDK is 7.84.
4.3 INSTALLING THE SOFTWARE

To install the SDK, run the Ezairo 8300 _SDK <version>.exe application, where <version> is the the SDK
version number. If you are using Windows 10, the installer prompts you to run as an administrator.

The installer copies the files to C:/Program Files (x86)/ON Semiconductor\Ezairo 8300 SDK by default.

The installer also copies the Ezairo 8300 device support files into C:\Program Files (x86)\Common
Files\SignaKlara\CTK.

A desktop link to the Ezairo 8300 SDK is installed. Use this for opening the SDK, so that it can properly
configure the build environment for the SDK.

4.3.1 Using the ide.json File

idejson is a JSON-format file that includes all the paths that need to be in your system variable path, and all the
necessary environment variables, so that your Ezairo 8300 SDK code projects can work properly.

The ide.json file is included with your Ezairo 8300 SDK install. The figure "Default ide.json File" (Figure 9)
shows an example of the file’s contents, which can change from release to release.

www.onsemi.com

20

https://www.onsemi.com/
https://www.microsoft.com/en-us/download/confirmation.aspx?id=52685

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

JPPORT _|

ME_I

Figure 9. Default ide.json File

As the figure shows, the idejson file’s path array contains all the recommended system variable paths, whereas
env is a dictionary containing all the necessary key value pairs for the environment variables.

The ide.json file contains the default paths when you download it along with the SDK. However, the tools you
want to use in your coding projects might be different locations from the default ones shown in the file. If so, you
can carefully edit the file, by following these steps:

1. Before you do anything else, back up the file in its original default configuration.

CAUTION: Do not neglect this step! If ide.json is deleted, or if its syntax is incorrect, the SDK cannot

work properly, so be sure you have a backup of the original.

2. Edit the file so that it points to locations appropriate for your system.
NOTE: You need administrator rights to edit ide.json if the Ezairo 8300 SDK has been installed in its
default location.
3. Save the edited file; and keep the backup of the original version, just in case.
4.4 PREPARING THE SYSTEM TO BUILD SOURCE CODE WITH THE ASIP DESIGNER TOOLCHAIN

Prior to starting the IDE you need to create a new environment variable, which the IDE uses to find the
Synopsys license server. The environment variable needs to be named SNPSLMD LICENSE FILE. The value of this
variable needs to be the location of the license server being used, in the format port@ServerName. The default port

www.onsemi.com

21

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

is 27020, so the name of the license server needs to resemble 27020@YourServerName. See the figure "Adding the
SNPSLMD Environment Variable" (Figure 10) for an example. For further information, see
https://www.synopsys.com/support/licensing-installation-computeplatforms/licensing.html.

Variable name: SNPSLMD_LICENSE_FILE
Variable value: 270200@YourserverName
Browse Directory.. Browse File.. oK Cancel

Figure 10. Adding the SNPSLMD Environment Variable

If this environment variable is entered incorrectly, any attempt to create an ASIP Debug configuration fails, with
a message indicating that the plugin cannot load a debug configuration class. (See the figure "ASIP Debug
Configuration Error" (Figure 11).)

FLEXible License Manager >

lc_checkout: : Cannot find license file,

The license files [or license server system network addresses) attempted
are

listed below, Wse LM_LICEMSE_FILE to use a different license file,

or contact your software provider for a license file,

FlexMet Licensing error-1,234

Figure 11. ASIP Debug Configuration Error

The IDE can also fail in other ways when attempting to use ASIP plugins if this environment variable is
incorrect.

Once the SDK has been started, there is one more step to perform before you can build code using the ASIP
Designer toolchain: configure the location of the processor model project file cf624c.prx. To do this, follow the
steps below:

1. Click on the menu item ASIP Designer and select Add/Remove ASIP Processor(s).

2. The dialog that pops open must not have any previous processor models populated.

3. Select Add ASIP. A new dialog appears, asking for the location of the ASIP processor's .prx file. If the
installation has been performed to the default location, you can point to the following file:
C:/Program Files (x86)/ON Semiconductor\Ezairo 8300 SDK \cf624c-a20 <version>\lib\cf624c.prx

4. Click Open, then click Done to save the new location of the project file.

www.onsemi.com

22

https://www.synopsys.com/support/licensing-installation-computeplatforms/licensing.html

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

5. A window pops up, asking you to select the processors you want to activate. Select them, and choose
Activate.
6. Follow a similar process to add the processor model for LPDSP32.

www.onsemi.com

23

onsemi Confidential

CHAPTER 5

Introduction to Sample Applications

To help you learn about the programming aspects of Ezairo 8300, the Software Development Kit (SDK)
includes a number of sample code applications as part of its installation. Each sample code application is intended
to be simple, easy to use and modify, and practical. You might want to experiment with programming Ezairo 8300
by building an application based on a sample code template. But while the sample code does contain recommended
programming practices for Ezairo 8300, it is primarily intended to be a learning tool and does not necessarily
represent the most efficient or optimal way to implement programs for Ezairo 8300 unless specified as such.

NOTE: Additional sample code is available in the Communication Toolkit (CTK) Developer Kit. It
includes sample applications for communicating with a host system such as a PC.

5.1 ACCESSING THE SAMPLE APPLICATIONS

The sample code applications are included in the SDK installation. They are located in <SDK_
HOME>\source\samples.

NOTE: The default installation folder is C:\Program Files (x86)\ON Semiconductor\Ezairo 8300
SDK)\. Your installation folder is represented as <SDK_HOME> in this document.

Alternatively, the sample code can be viewed through the IDE. To modify, build, and run a particular sample,
follow the steps in either Section 5.1.1 “IDE Method #1: Importing sample applications through the Sample Code
Explorer”, or Section 5.1.2 “IDE Method #2: Creating a new sample from a template”.

If you would like to import all of the sample applications at once, you can follow the instructions in
Section 5.1.3 “IDE Method #3: Importing a sample code application as an existing project”, but select the source
folder instead of a particular project's folder.

A text file in Markdown format called readme.md accompanies each sample code application, and contains
information about how that specific sample works. Most sample applications are intended to be used in the
Hierarchical view in Project Explorer, available by selecting the drop-down arrow at the top right, selecting Projects
Presentation, and choosing Hierarchical.

5.1.1 IDE Method #1: Importing sample applications through the Sample Code Explorer

To use this method, perform the following steps:

1. In the C/C++ perspective of the IDE, select from the menu Window > Show View > Other..., and browse to
onsemi > Sample Code Explorer....

2. A new view opens that allows you to browse the available sample applications included in the SDK. Check
marks show which cores are used in each of the sample applications. See the figure "Sample Code Explorer
Showing the Cores Used in Each Sample Application" (Figure 12).

3. To import a sample application, right click the sample application name and choose either Import Single
Project or Import Multiple Projects as applicable.

4. Once imported, the sample application can be built as usual.

This method copies one sample code application at a time into your workspace. You can use this copy as a
starting point for your own applications.

If you are deleting a project from your workspace that is using hierarchical view, delete all sub-projects first
before deleting the top-level application project.

www.onsemi.com

24

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

[22 Problems ¥ Tasks E Console [Properties ﬁSampIe Code Explorer £

Name CM3 CFX LPDSP32 HEAR FENG A
v i Sample Code
v (=samples
[*Jabsolute_value V]
[>application /] V] /] @ <
[Jaudio_codecs v
= audio_passthrough_cfx V]

Figure 12. Sample Code Explorer Showing the Cores Used in Each Sample Application

For even more detail on using the Sample Code Explorer to access sample applications for the CFX, CFX C, and
the Arm Cortex-M3 processor, see Section 6 “Working with Sample Applications” on page 27.

5.1.2 IDE Method #2: Creating a new sample from a template

To use this method, perform the following steps:

1. In the C/C++ perspective of the IDE, select from the menu File > New > Project..., or right-click in the
empty space in Project Explorer and select New > Project....

2. Select SK5 > SKS5 Project, and click Next.

3. Type in a project name without spaces; from the list, select the sample code that you want to view; and click
Finish. The IDE creates a project in your workspace.

This method creates a new project for either the HEAR or the Filter Engine, based on a template. You can use
this as a starting point for your own applications. NVM images can be created through a similar interface.

5.1.3 IDE Method #3: Importing a sample code application as an existing project

For this method, follow these steps:

1. From the menu, select File > Import.

2. Select General > Existing Projects into Workspace and click Next.

3. From Select root directory, browse to the location of the sample code applications in your file system. (The
location is typically <SDK_HOME>\source\samples\<sample_name>, though some sample applications are
grouped into sub-folders by category.) Check Copy projects into workspace. Then click Next.

The selected sample code from the SDK installation is copied into your workspace. You can modify this to
build your own application, just as in Method #1. As some samples are grouped into sub-folder categories, you need
to right-click and choose Import as Project after the initial import is finished.

NOTE: Remember to change the Project View to Hierarchical.

5.2 CODE STRUCTURE AND GENERAL INFORMATION

A possible basic starting point for writing a new program is using the sample application simply called
application, which provides a shell project for each of the programmable cores in Ezairo 8300. Each core has a
separate toolchain, and this application contains a project for each of the toolchains. It also contains some
recommendations about project structure. See the readme file for more details.

www.onsemi.com

25

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

The sample applications are named descriptively. Given the manageable number of sample applications
available, we recommend exploring the available samples and seeing what is of most use for you as a starting point
or as a learning tool for your development needs. In a subset of cases, the samples are located in a subfolder based
on the core they are intended to demonstrate, but typically they are located at the top level and are based on
functionality rather than on using a particular core.

Note that the chip ID used in the build settings might need to be modified to match the version you are using.
The final version uses chip ID 101, and so the preprocessor build setting would be set to SK5 _Cc1D=101. Check this
for any sample application you wish to use for debugging on hardware. There is also a different build setting
available for the CFX to switch debugging on the hardware versus debugging on the instruction set simulator (ISS).
The debug configuration would also need to be changed accordingly.

5.2.1 Shared Data Elements

When creating an application that uses several of Ezairo 8300's cores, sharing data between application
elements is often required. Some common methods of sharing data includes:

« Using FIFOs or the DMA to pass input/output data
« Using shared memory references at pre-defined shared locations, and using signaling or semaphores to isolate
which core controls the data contents at any given time

A common method of defining symbols is to add the shared symbols to the linker scripts. For example, to define
a variable data_store symbol located at an offset of 0x200 from the base of HEAR shared memory for use by the
CFX, a user application could add a define in C as:

I extern volatile int data store I

or in assembly as:

I .undef global data data store I

by also defining this shared resource in the linker scripts as:

_symbol data store (D _HEAR SHARED MEM BASE + 0x200)
_extern data store

www.onsemi.com

26

onsemi Confidential

CHAPTER 6

Working with Sample Applications

This topic contains basic information about working with the CFX Assembler, CFX C, and Arm Cortex-M3
processor sample application code, taking you through importing, building, and debugging three different kinds of
sample applications. For additional in-depth information about working with sample applications, including those
for the HEAR, Filter Engine, and LPDSP32 cores, see Section 5 “Introduction to Sample Applications” on page 24,
and the readme files included with the sample code. Note that the intended usage for sample applications is for
familiarizing yourself with possible uses for Ezairo 8300 and becoming comfortable with the development
environment. Since Ezairo 8300 relies on external non volatile memory and does not contain on-chip flash memory,
the expected usage for sample applications is debugging applications from RAM.

If you wish to build the sample applications into an NVM image for use with an external NVM device, take
care to read the appropriate information in the documentation to determine which modifications are needed. The
NVMUpdate utility found in the utilities folder of the SDK can be used to download NVM images using I2C or
JTag. See the Integrated Development User’s Guide for Ezairo 8300 or the readme file along with NVMUpdate for
more information.

IMPORTANT: Ezairo 8300 code, whether sample applications or user-built, can operate out of RAM
(Debug) or NVM. However, there is no specific test to see whether a clock calibration table is present in NVM
during RAM Debug, so the CCO defaults to an uncalibrated trim setting of 7.68MHz. This can sometimes
cause erratic behavior in applications, and out-of-spec clock speeds for IZC, SPI, IZS, and I°C.

6.1 STARTING THE EZAIRO 8300 SDK

1. If you are upgrading the Ezairo 8300 SDK, create a new workspace at, for example, c:\workspace — using
either Windows Explorer or the onsemi Launcher in step 2.

2. Open the onsemi IDE by going to the Windows Start menu and selecting onsemi > Ezairo 8300 SDK. From
the Ezairo 8300 Development Tools IDE Launcher screen, browse to your new workspace, select it, and click
Launch.

6.2 CFX ASSEMBLER SAMPLE APPLICATION
6.2.1 Importing and Building the CFX Assembler Sample Project

To use the Ezairo 8300 CFX DSP sample project included with this release, first start the Ezairo 8300 SDK as
described in Section 6.1 “Starting the Ezairo 8300 SDK” on page 27.

To import sample applications in the Ezairo 8300 SDK, use the Sample Code Explorer view. This view is open
by default in the C/C++ perspective when starting the SDK for the first time. To access the Sample Code Explorer
view at any other time, choose Window > Show View > Other > onsemi > Sample Code Explorer. The explorer
appears in the views panel in the lower section of the IDE.

In the Sample Code Explorer view, follow these steps to import the CFX assembler sample application:

1. In the Name panel at the lower part of the view, click the arrow next to Sample Code. This reveals the
samples directory.

2. Click the arrow next to samples. This opens a list of the sample applications. Clicking the arrow next to
CFX reveals the sample CFX_assembly application.

3. Optional step: if you want to read the sample application’s readme file, click on the application name. The
readme file appears in a separate panel, providing a description of what the sample does.

www.onsemi.com

27

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

4. To import the CFX sample project, right-click sample CFX_ assembly and select Import Single Project from
the dropdown menu.

5. A copy of the sample application is imported directly into your workspace, as can be seen in the Project
Explorer panel on the left side of the view. This copying does not modify the original source in the SDK
installation folder.

6. Right-click on the project’s name in the Project Explorer panel, and choose Build Project from the dropdown
menu. This builds the project with no errors.

Before starting development with the ASIP Programmer tools the developer must first point to the CFX or
LPDSP32 model library. To do this:

1. Click on the ASIP Designer menu item in the top menu and select Add/Remove ASIP Processor(s).

2. Click on Add ASIP in the right column.

3. When selecting the CFX processor point to a directory similiar to this: C:/Program Files (x§6)/ON
Semiconductor\Ezairo 8300 SDK\cf624c<version>\lib, or C:/Program Files (x86)/ON Semiconductor\Ezairo
8300 SDK\Ipdsp32<version>\lib for the LPDSP32 processor.

4. Click on Done to save and close the dialog.

5. After selecting the processors to include click on ASIP Designer > Select Active ASIP programmer
processor.

6. The dialog shows all selected processors and blank checkboxes beside them. Enable the checkboxes for the
processors you want to use with the ASIP programmer tools; multiple processors can be selected. When you
are done, click Finish to close the dialog box.

(See the ASIP Designer - ASIP Programmer Eclipse Reference Manual (eclipse-manual.pdf) for more
information.)

At this point the ASIP Programmer tools are configured for use with projects and debuggers.

6.2.2 Debugging the CFX Sample Code
6.2.2.1 Changing CTK Configuration for CFX Debugging

To change the Communication Toolkit (CTK) configuration used for CFX debugging, you can set the E§300
CTK_CONFIG environment variable to any existing CTK configuration. By default without the environment variable,
the CFX CFG_8xxX configuration is used for CFX debugging, which provides the ideal settings for Ezairo 8300
when using the Pulsar. Another approach to changing the configuration used for CFX debugging (and loading of
HEAR and Filter Engine applications) is to edit the CFx CFG 8xxx CTK configuration. To change or view CTK
configurations such as this one (for example if you are using a CAA rather than the Pulsar), open the CTK
Configuration Manager using the Windows Search or Start Menu. It is not possible to change the CTK configuration
for a CFX debug session through the IDE, nor the CTK configuration itself.

6.2.2.2 Debugging the CFX with SEGGER J-Link

This section explains Ezairo 8300's newly-added support for debugging the CFX core via a SEGGER® J-Link®
(JTAG/SWD) interface. This feature allows the user to debug the CFX core using the onboard J-Link connection,
and to perform simultaneous debugging of the CFX and Arm Cortex-M3 cores.

NOTE: At the moment, the CTK only supports communicating with the CFX via JTAG.

The J-Link communication interface is designed to communicate through the SEGGER J-Link using
JTAG/SWD protocols.

www.onsemi.com

28

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

o Communication Interface Name: JLink

o Communication Module: JLinkModule.dll

o Required Drivers: JLinkARM.DLL, JLink x64.dll (These are included with the SEGGER J-Link software
package, which can be downloaded from SEGGER. The .d!! files must be found on the path for the module
to use.)

This feature has been tested with the SEGGER J-Link driver version 7.68a.

Currently, the CTK provides J-Link JTAG CFX and J-Link SWD CFX configurations. If you want to set up the
J-Link for CFX deubgging using these provided J-Link JTAG configurations, perform the following steps:

1. Connect the Ezairo 8300 Evaluation and Development Board with a micro USB cable.
2. Create/update the Ezairo 8300 environment variable (E8300 CTK CONFIG) to use the new configuration, as
shown in the figure "Creating/Updating the Environment Variable" (Figure 13).

Mew User Vanabile *
Vanable name: ES300_CTR_COMFIG
Varakble value: Min k__IT.QI:-._I: de

Browse Directory.. Browse File.., oK Cancel

Figure 13. Creating/Updating the Environment Variable

This enables the user to debug the CFX core with the J-Link JTAG CFX configuration.

IMPORTANT: When debugging the CFX simultaneously with the Arm Cortex-CM33 processor, the
configuration for the CFX must have Silent set to True. Only start the CFX debug after the Arm Cortex-
CM33 processor debug has been started.

If you do not want to use the provided J-Link JTAG debug configuration, create a new debug configuration by
following these steps:

1. Right click on the built .elf file (sample_ CFX_assembly in this case) and select Debug As > Debug
Configurations or select Synopsys ASIP Application (Customize) to directly create a new debug
configuration with pre-filled values. (See the figure "Creating CFX Assembler Debug Configuration, Step 1"
(Figure 14)

www.onsemi.com

29

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

% || 0O | O} | e Mo Launch Configurations | on: | --- iR | Br-/{R-BigaS -
[Project Explorer X BE&EY 8 =0

v =% sample_CFX_assembly
b

i
[l Includes

w = Debug
= chesswork
app_memeory.o - [none/le]
@ app_start.o - [none/le]
app.o - [none/le]
15 samnle CFX assembhv.elf - Tnone/lel

Binaries

apE plew :
L a
" om
apr Show In Alt+Shift+W >
apg QOpen With >
2PF Show in Local Terminal >
[n] apph
app_Lt 5] Copy Cirl+C
app_mr Paste Ctrl+V
3PPt 98 Delete Delete
2pp- Move...
@ readm
Rename... EX
fxg Import..
g Export.
T Import ChessDE application project...
Refresh F5
QD RunAs >
{;: Debug As -3 1 C/C++ Container Application
Profile As H 2 Local C/C++ Application
Profiling Tools > T 3 Synopsys ASIP Application (Customize)
#7 Run C/C++ Code Analysis T 4Synopsys ASIP Application on 155
T ’ Debug Configurations...
Compare With >
Replace With 3
k] Validate
Properties Alt+Enter

[* Problems =] Tasks B Conscle X [Properties @ Sample Code Explorer

CDT Build Console [sample CFX_assembly]

13:26:29 **** Rebuild of configuration Debug for project sample CFX_assembly ****

Figure 14. Creating CFX Assembler Debug Configuration, Step 1

2. The Debug Configurations dialog is displayed. Right click on the ASIP Designer Application configuration
type and select New (as shown in the figure "Creating CFX Assembler Debug Configuration, Step 2" (Figure

15)).

www.onsemi.com

30

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

£ Debug Configuraticns | *

Create, manage, and run configurations

ﬁ ;0 | = 1_" e Configure launch settings from this dialog:
type filter text | 7 - Press the 'Mew Cenfiguration' button to create a configuration of the selected type.
C/C++ Application - Press the 'New Prototype' button to create a... configuration prototype of the selected type.
pp P g9 P P B

[£] C/C++ Attach to Application
[E] C/C++ Container Launcher
[E] C/C++ Postrnortem Debugger =| - Press the 'Duplicate’ button to copy the selected configuration.
[£] C/C++ Remote Application
C{ C/C++ Unit

[£] GDB Hardware Debugging |7 - Press the 'Filter' button to configure filtering options,
[€] GDB OpenOCD Debugging

[£] GDB SEGGER J-Link Debugging
i@ Launch Group - Select launch configuration(s) and then sele..Link Prototype’ menu item te link a prototype.

T Synopsys ASIP Application ©---~>
" Mew Configuration

.4 - Press the 'Export’ button to export the selected configurations.

3 - Press the 'Delete’ button to remove the selected configuration.

- Edit or view an existing configuraticn by selecting it.

n(s) and then sel...k Prototype’ menu item to unlink a prototype.

] New Prc:tu:t:.-'p1 Mew launch configuration Fthen sele,..ues’ menu item to reset with prototype values.

& Export...
Duplicate ve settings from the 'Perspectives' preference page.
Delete

Link Prototype...
Unlink Prototype

r| Reset with Prototype Values

Filter matched 11 of 11 items

@ Debug

higk! Close

Figure 15. Creating CFX Assembler Debug Configuration, Step 2

1. A new dialog is displayed, allowing you to create your debug configuration. Within this dialog the
following information must be added (shown for the sample_ CFX_assembly executable):
a. In the Executable tab view, select your desired Project (in the figure "Creating CFX Assembler
Debug Configuration, Step 1" (Figure 14), sample_CFX_assembly) and Executable (in the figure
"Creating CFX Assembler Debug Configuration, Step 2" (Figure 15), C:\eclipse-workspace\sample
CFX_assembly\Debug). See the figure "Selecting Project and Executable for Debug Configuration”
(Figure 16).

www.onsemi.com

31

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

ﬂ Edit Configuration

Edit Synopsys ASIP Application (debug) configuration sample_cfx_assembly for Debug

Set parameters for the configuration.

Launch Configuration Mame: | sample_cfx_assembly

Executable | ASIP Target.g Profiling Information ' Additional Debugger Options:

Project: | sample_CF¥_assembly | Browse...
Executable: | ChUsersh, OMSEMPonsemi-workspace\sample_CFX_assembly\Debugisample_CFX_assembly.elf | Browse...
Working Directory: | ChUsersh, OMNSEMPonsemi-workspacelsample_CFX_assembly'\Debug |
Arguments: | Enter comma-separated list of arguments (if any) to the program here |
[] Stop At: | main

Program load options

[]Load only symbaols [+] Do not initialize .bss sections

Load program counter Load stack pointer

[JPut breakpoint on end of main function []Warn when instructions are overwritten

[] Only initialize read-only segrments
@' Duplicate Delete Cancel

Figure 16. Selecting Project and Executable for Debug Configuration

NOTE: If Put breakpoint on end of main function is selected and the last instruction in main is not a
valid breakpoint location, the debug console reports ERR _INVALID HWBREAK LOCATION when

debugging the application.

www.onsemi.com

32

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

b. In the ASIP Target tab view, click the Connection Type dropdown menu and select Remote
Hardware/Emulation (see the figure "Selecting Connection Type for Debug Configuration" (Figure

17)).

Mame: sample CF¥_assembly

Executable | ASIP Target | Profiling Information | Additional Debugger Options

Systern Configuration: [Single Core v]
Processor [Cf2dc A]
Connecticn type: [Her‘n:-te Hardware/Emulation v]
cfib2dc
Rermote:
localhost
p
Hardware
Debug Client: | cfb2dc_client hd

ITalk launch settings
hs2: Digilent JTAG HS2

Core ID: 1
Host: localhost
Paort: 41001

Additional Options: Additional argurments to the talk server can be given here

Figure 17. Selecting Connection Type for Debug Configuration

NOTE: The Debug Client is an application that is located in the model (selected during setup) under
the ISS directory. If Remote Hardware/Emulation is selected and a red X appears on the
dialog, this indicates that c¢f624c_client might be missing. Check the ISS directory; if the file is
missing (cf624c_client.exe), it can be found in the Debug Client directory off the root of the
SDK installation. Copying the client application into ISS resolves the issue.

www.onsemi.com

33

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

All other information in the debug configuration can remain set to defaults. The debug client uses the CTK to
communicate with the chip, and always uses the CFx CFG_8xxx CTK configuration, which must be left as the
default Pulsar configuration. Host and Port are not used in this case.

IMPORTANT: If you are having trouble establishing a connection to the ASIP target, we recommend that
you reduce the speed of the I°C to its lowest setting.

To begin debugging, follow these steps:

1. Click on Apply and Debug. The application begins loading to the device. If this is successful, an ASIP

Designer Debug session opens.
2. You are now able to step through the code, look at registers and memory views, and more.

If you encounter issues with debugging, refer to CFX Debug Troubleshooting.

6.3 CFX C SAMPLE APPLICATION

IMPORTANT: The IDE cannot disable interrupts during a debugging session.

A workaround for the CFX core is clearing the master interrupt register manually in the memory view
(0x840 in IOMEM).

6.3.1 Importing and Building the CFX C Sample Project

To use the Ezairo 8300 C sample project included with this release, start the Ezairo 8300 SDK from the desktop
link.

To import sample applications in the Ezairo 8300 SDK, use the Sample Code Explorer view. This view is open
by default in the C/C++ perspective when starting the SDK for the first time. To access the Sample Code Explorer
view at any other time, choose Window > Show View > Other > onsemi > Sample Code Explorer. The explorer
appears in the views panel in the lower section of the IDE.

In the Sample Code Explorer view, follow these steps to import the CFX C sample application:

1. In the Name panel at the lower part of the view, click the arrow next to Sample Code. This reveals the
samples directory.

2. Click the arrow next to samples. This opens a list of the sample applications. Clicking the arrow next to
CFX reveals the factorial_calculation_demo application.

3. Optional step: if you want to read the sample application’s readme file, click on the application name. The
readme file appears in a separate panel, providing a description of what the sample does.

4. To import the CFX sample project, right-click factorial_calculation_demo and select Import Single Project
from the dropdown menu.

5. A copy of the sample application is imported directly into your workspace, as can be seen in the Project
Explorer panel on the left side of the view. This copying does not modify the original source in the SDK
installation folder.

6. Right-click on the project’s name in the Project Explorer panel, and choose Build Project from the dropdown
menu. This builds the project with no errors.

Before starting development with the ASIP Programmer tools the developer must first point to the CFX or
LPDSP32 model library. To do this:

www.onsemi.com

34

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

—_—

. Click on the ASIP Designer menu item in the top menu and select Add/Remove ASIP Processor(s).

2. Click on Add ASIP in the right column.

3. When selecting the CFX processor point to a directory similiar to this: C:/Program Files (x§6)/ON
Semiconductor\Ezairo 8300 SDK\cf624c<version>\lib, or C./Program Files (x86)/ON Semiconductor\Ezairo
8300 SDK\Ipdsp32<version>\lib for the LPDSP32 processor.

4. Click on Done to save and close the dialog.

5. After selecting the processors to include click on ASIP Designer > Select Active ASIP programmer
processor.

6. The dialog shows all selected processors and blank checkboxes beside them. Enable the checkboxes for the

processors you want to use with the ASIP programmer tools; multiple processors can be selected. When you

are done, click Finish to close the dialog box.

(See the ASIP Designer - ASIP Programmer Eclipse Reference Manual (eclipse-manual.pdf) for more
information.)

At this point the ASIP Programmer tools are configured for use with projects and debuggers.

6.3.2 Debugging CFX C Sample Code

To debug the built factorial calculation _demo sample code, which is implemented in C, follow the same
procedure described in Section 6.2.2 “Debugging the CFX Sample Code” on page 28.

6.3.3 CFX Debug Troubleshooting

The following are some possible issues that may arise while debugging CFX sample code, along with
recommended solutions to the problems:

Configuration is Blank with red X in tab:
If you see a screen like figure "CFX C Debug Configuration Setup Error" (Figure 18), below, when
you create a new ASIP Designer debug configuration, it indicates that you have not configured the
ASIP Designer with a model project yet, or that the processor has not been selected as active. To
resolve this, follow the instructions in Section 4.4 “Preparing the System to Build Source Code
with the ASIP Designer toolchain” on page 21.

www.onsemi.com

35

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

£ Debug Configurations O x

Create, manage, and run configurations

€3 Error: Mo processors added to list of register ASIP Processors...

B ¢ = ﬁ| FLoE = Mame: | Mew_configuration |

|t;,-'pr:filtr:rtr:xt | B Errorin Setup

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Container Launcher
[E] C/C++ Postmortern Debugger
[E] C/C++ Remote Application
Cif C/C++ Unit
[£] GDB Hardware Debugging
[E] GDB Open0OCD Debugging
[£] GDB SEGGER J-Link Debugging
& Launch Group

w T Synopsys ASIP Application (debug)

T MNew_configuration

Figure 18. CFX C Debug Configuration Setup Error

When the debugging operation begins, it stops with a launch error, including the non-obvious example of:
Error in services launch sequence. Invalid argument: localhost=localhost

This indicates that the loading process has attempted to start, but has encountered an error. Some
possible causes and solutions for this are:

o There might be no device or Pulsar connected, and the debugger needs such a connection to be able to create
a local debug host (needed to resolve the localhost argument in a standard debug configuration). Make sure
your Pulsar and device are properly connected, powered, and are able to communicate.

« You can confirm your CTK configuration by using the CTK Configuration Manager (found in the Windows
Start menu under onsemi). Edit the CFX CFG 8xXX configuration and choose Test. Seeing the result
Configuration is okay confirms the configuration. If communication with the device is fine, the utility
returns a chip family of 10 (SKS5).

o PSU-SEL pins 3 and 4 need to be shorted to power the board through the Pulsar. See the Ezairo 8300
Evaluation and Development Board Manual for more information.

o A license is required during debugging; if a license cannot be found for the Synopsys debugging tools, the
launch fails.

o There might be issues with the Pulsar programmer. Two specific issues can cause problems:

o When using the SV1 evaluation board, the Pulsar needs to have its pull-ups disabled; otherwise, false
NAKSs occur.

¢ The CTK might have become corrupted. Either run the SDK installer and use the repair function to fix the

CTK installation, or click uninstall from the Windows Control Panel and then click on repair.

www.onsemi.com

36

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

6.4 ARM CORTEX-M3 PROCESSOR SAMPLE APPLICATION
6.4.1 Importing and Building an Arm Cortex-M3 Processor Sample Project

To use the Arm Cortex-M3 processor sample projects, start the Ezairo 8300 SDK from the desktop link.

To import sample applications in the Ezairo 8300 SDK, use the Sample Code Explorer view. This view is open
by default in the C/C++ perspective when starting the SDK for the first time. To access the Sample Code Explorer
view at any other time, choose Window > Show View > Other > onsemi > Sample Code Explorer. The explorer
appears in the views panel in the lower section of the IDE.

In the Sample Code Explorer view, follow these steps to import an Arm Cortex-M3 processor sample
application:

1. In the Name panel at the lower part of the view, click the arrow next to Sample Code. This reveals the
samples directory.

2. Click the arrow next to samples. This opens a list of the sample applications. Clicking the arrow next to
Cortex-M3 reveals the Arm Cortex-M3 core applications.

3. Optional step: if you want to read the sample application’s readme file, click on the application name. The
readme file appears in a separate panel, providing a description of what the sample does.

4. To import an Arm Cortex-M3 processor sample application, right-click on the desired application name
(ASRC, blinky, cm3_bootloader, i2¢_cmsis, swmTraceExample, or uart_cmsis) and select Import Single
Project from the dropdown menu.

5. A copy of the sample application is imported directly into your workspace, as can be seen in the Project
Explorer panel on the left side of the view. This copying does not modify the original source in the SDK
installation folder.

6. Right-click on the project’s name in the Project Explorer panel, and choose Build Project from the dropdown
menu. This builds the project with no errors.

IMPORTANT: The Ezairo 8300 SDK requires certain files to be present in the path when building Arm
Cortex-M3 processor-based applications. Depending on the system path configuration and/or command shells
present, the build might fail due to these files not being found. In some cases sh.exe is found, which also causes
a build to fail on Windows. To prevent such failures when generating a new project for the Arm Cortex-M3
core using File->New->C/C++ Project, add "SHELL=cmd" (no quotes, case sensitive) to the build command,
and uncheck ""Use default build command", as shown in the figure "Build Argument Shell Command" (Figure
19). This is done in the Project Properties under the C/C++ Build->Builder Settings Tab.

www.onsemi.com

37

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

200

& Properties for blink o

‘ type filter text | C/C++ Build i =
Resource
Builders
C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

» CfC++ General
Linux Tools Path
MCU
Project Natures Builder

E Builder Settings @& Behavior " Refresh Policy

Project References

Builder type: |E)cternal builder ~
Run/Debug Settings

[]Use default build command

Task Repository
Task Tags Build command: | ${cross_make} SHELL=cmd Variables...
> Validation) .
WikiText Makefile generation
Generate Makefiles automatically Expand Env. Variable Refs in Makefiles
Build location
Build directory: | ${workspace_loc,/blinky}/Debug
Workspace...| | File system...| | Variables...
Restare Defaults Apply
® Apply and Close Cancel

Figure 19. Build Argument Shell Command

6.4.2 Debugging Arm Cortex-M3 Processor Sample Code

For debugging the built code on the Arm Cortex-M3 processor, create a new debug configuration with the
following steps:

1. Right click on the built .e/f file (blinky.elf in this case) and select Debug As > Debug Configurations, as
shown in the figure "Arm Cortex-M3 Processor Debug Configuration, Step 1" (Figure 20).

www.onsemi.com

38

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

N-HQ B@®-BiSivios ifvilvoorD
&5 Project Explorer O&|s Y= O
4 5= blinky
. % Binaries
> m Includes
4 (= Debug
> app.o - [arm/le]
: % blinky.elf - [New R
= app.d
El blinky.hex Open
= blinky.map Open With g
[& makefile Show in Local Terminal 4
L@ objectsmk | = copy Ctrl+C
L& sources.mk Paste Ctrl+V
L@ subdirmk | 3¢ Delete Delete
> = include Remove from Context Ctrl+Alt+Shift+Down
> (@ linked Move...
> (= Release Rename... F2
> gl app.c
@ ppd bii g1 Import..
=l rea _me_ inky. 4 | Export..
|5 sections.ld
| Refresh F5
Run As 4
5 Outline 3 [Task L Debug As v | E] 1 Local C/C++ Application
} N § ;
An outline is not availab Prof!I_eAs Debug Configurations...
Profiling Tools 4
Validate
#" Run C/C++ Code Analysis
Team s
Compare With 4
Replace With ' 18 console =
Properties Alt+Enter |es to display at this time.

Figure 20. Arm Cortex-M3 Processor Debug Configuration, Step 1

2. The Debug Configurations dialog is displayed. Right click on the GDB SEGGER J-Link Debugging
configuration type and select New (see figure "Arm Cortex-M3 Processor Debug Configuration, Step 2"
(Figure 21)).

www.onsemi.com

39

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

& Debug Configurations O x
g g

Create, manage, and run configurations

F | = Configure launch settings from this dialog:

| type filter text | | - Press the 'Mew Configuration' button to create a cenfiguration of the selected type.

" ASIP Designer Applicatior || [B} - Press the 'New Prototype' butten to create a launch configuration prototype of the selected type.
[E] C/C++ Application

C/C++ Attach to Applicat
[E] C/C++ Container Launch =| - Press the 'Duplicate’ button to copy the selected configuration,
E C/C++ Postmortem Debu
[E] C/C++ Remote Applicatic
Cij C/C++ Unit 17 - Press the 'Filter' button to configure filtering options.
[c] GDB Hardware Debugging
[©] GDB Open0CD Debuggin

E EDB SEGGGE fime Eantutin guration(s) and then select 'Link Prototype’ menu item to link a protetype,
. aunch Grc

L4 - Press the 'Export’ button to export the selected configurations.

2L - Presc the 'Delete’ button to remove the selected configuration.

- Edit or view an existing configuration by selecting it.

5 New Prototype guration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype.
%0 bBcport.. guration(s) and then select 'Reset with Prototype Values' menu item to reset with prototype values.
Duplicate
Delete ctive settings from the Perspectives’ preference page.

Link Prototype...
Unlink Prototype

Reset with Prototype Values

£ >
Filter matched 11 of 11 items

@' Debug Close

Figure 21. Arm Cortex-M3 Processor Debug Configuration, Step 2

3. A new dialog is displayed, allowing you to create your debug configuration. Within this dialog the
following information must be added:
a. In the Main tab view, select the project you are working on (in this case blinky), and the C/C++
application (in this case Debug\blinky.elf), as shown in figure "Selecting Project and Application
Type" (Figure 22).

www.onsemi.com

40

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

& Debug Configurations O X

Create, manage, and run configurations

OB x| Bl Name:|blinky
| type filter text | Main] £ Debugger! =3 Startup| B Source| 5= Common| &, SVD Path

:E ASIP Designer Applicatior
€] C/C++ Application

[E] C/C++ Attach to Applicat | blinky Browse...
[E] C/C++ Container Launch C/C++ Application:

[c] C/C++ Postmortem F)eb.L | BebigbREE

[c] C/C++ Remote Applicatic —
Cij C/C++ Unit Variables... | | Search Project... Browse...
[£] GDB Hardware Debugging
[©] GDB OpenOCD Debuggin

Project:

Build (if required) before launching

v [&] GDB SEGGER J-Link Debuc Build Configuration: .5electAutomatically ~
blin
€] g (O Enable aute build (O Disable auto build

@ Launch Group
(®) Use workspace settings Configure Workspace Settings...

£ >
; 3 Revert Apply
Filter matched 12 of 12 items

©

Figure 22. Selecting Project and Application Type

b. In the Debugger tab view, enter Cortex-M3 in the Device Name window, and make certain that the
Other Options field does not include the -nogui option, as shown in figure "Device Name Window"
(Figure 23).

www.onsemi.com

41

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

£ Debug Configurations O X

Create, manage, and run configurations

CE®E X BT | Nme [blinky

| type filter text | Main [:ﬁﬁi Debugger] > Startupl Ep Sourcel i=| Commonl 5 SVD Path|
" ASIP Designer Applicatior J-Link GDB Server Setup &
[E] C/C++ Application [~ Start the J-Link GDE server locally [[] Connect to running target

[€] C/C++ Attach to Applicat
[E] C/C++ Container Launch
[€] C/C++ Postmortem Debu Actual executable: | C:/Program Files (x86)/SEGGER/ILink/ILinkGDBServerCL.exe
[£] C/C++ Remote Applicatic
Cif C/C++ Unit

Executable path: |S{jlink_path}.."S{jlink_gdbser\.rer} Browse... | Variables...

(to change it use the glebal or workspace preferences pages or the project properties page)

[£] GDB Hardware Debuggint Device name: | Cortex-M3 | Supported device names
[£] GDB OpenOCD Debuggin Endianness: (®) Little () Big
v [c] GDB ;EGGERJ—Link Debu Connection: (®) USB (@] | | (USB serial or IP name/address)
ﬂ%uﬁ:lcnhk{}roup Interface: (@ SWD O ITAG
Initial speed: Oauto O Adaptive @ Fixed kHz
GDB port:
SWO port: Verify downloads Initialize registers on start
Telnet port: Local host only []Silent
Log file: | Browse... |
Other options: | -singlerun -strict -timeout 0
Allocate console for the GDB server [] Allocate console for semihosting and SWQ
GDB Client Setup
Executable name: |S{cros-s_prefix}gdbS{cross_suﬁ‘ix} Browse... | Variables...
Actual executable: | arm-none-eabi-gdb |
Other options: | | “
£ >
Revert Apply

Filter matched 12 of 12 items

Figure 23. Device Name Window

c. In the Startup tab view under Runtime Options, tick the box labeled RAM application (reload after
each reset/restart), as seen in figure "Selecting Runtime Options" (Figure 24).

www.onsemi.com

42

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

& Debug Configurations O X

Create, manage, and run configurations

CRECRER | =5 = Name:lblinky

|t}"pEfi|tErtEXt | || B Main | %5 Debugger | = Startup | % Source| [[] Common | &, SVD Path |

"] I A
% ‘::‘i:p*-?e:s:;;iipnhcatmr Load executable

[E] C/Ce+ Attachto Applicat (®) Use project binary: blinky.elf

[€] C/C++ Container Launch () Use file: Workspace... File System...
E C/C++ Postmortemn Debu

[T] C/C++ Remote Applicatic becuiabisntis=tiber l:l

Cif C/C++ Unit

[£] GDB Hardware Debuggint

[©] GDB OpenOCD Debuggin
w E GDB SEGGER J-Link Debut Run/Restart Cemmands

[c] blinky Pre-run/Restart reset Type: l:l (always executed at Restart)

& Launch Group

Runtime Options
RAM application (reload after each reset/restart)

[]Set program counter at (hex):

Continue

£ >
Filter matched 12 of 12 items

©

Revert Apply

Figure 24. Selecting Runtime Options
All other information in the debug configuration can remain set to defaults.

1. Click on Apply and then on Debug. The application begins loading to the device. If this is successful, a J-
Link GDB Debug session opens.
2. You are now able to step through the code, look at registers and memory views, and more.

www.onsemi.com

43

onsemi Confidential

CHAPTER 7

More Information

Searchable HTML and PDF versions of the Ezairo 8300 user documentation, and PDF versions of manuals from
other sources, are included with your Ezairo 8300 installation. This topic explains what they relate to, and where to
find them.

7.1 WHERE TO FIND DOCUMENTATION

7.1.1 Finding HTML Documentation

Fully-searchable HTML versions of most Ezairo 8300 user documentation can be found with this shortcut: in
C:/Program Files (x86)/ON Semiconductor\Ezairo 8300 SDK\documentation\, double-click on searchable Ezairo
8300 documents.htm to start the HTML display in your default browser.

7.1.2 Finding PDF Documentation

The tables in Section 7.2 “Documentation Roadmap” on page 45 include locations of the PDF manuals that are
available in the \documentation| folder of this release. In the tables, the placeholder <sdk_home> represents the
folder where you have installed the SDK.

7.1.3 Finding the Information You Need

A documentation index by subject for both PDF and HTML, including locations, is found in Section 7.2
“Documentation Roadmap” on page 45. To help you find the information you are looking for, the topics are
organized as follows:

¢ "Overview Documentation" on the next page

¢ "CFX Documentation" on page 46

¢ "Arm Cortex-M3 Processor Documentation" on page 50

« "LPDSP32 Documentation" on page 52

« "HEAR Documentation" on page 55

« "Filter Engine Documentation" on page 56

o "Neural Network Accelerator Documentation" on page 56
o "Documentation for Other Hardware Elements" on page 57
¢ "NVM Support Documentation" on page 57

« "Communications Support Documentation" on page 57

7.1.4 Publicly-Available Documentation

For even more information, consult these publicly-available documents (not included with your Ezairo 8300
download):

Ezairo 8300:

More Ezairo 8300 information can be downloaded from the onsemi website, at
https://www.onsemi.com/products/audio-video-assp/audiology-dsp-systems/ezairo-8300.

Arm Cortex-M3 processor:

o Cortex-M3 Technical Reference Manual, revision r2pl
o ArmCortex Microcontroller Software Interface Standard (CMSIS)
e Yiu, Joseph The Definitive Guide to the Arm Cortex-M3 (Newnes, December 2009) or a similar book

describing the Arm Cortex-M3 core architecture

NOTE: You can find Arm publications on their website at http://infocenter.arm.com/help/index.jsp.

www.onsemi.com

44

https://www.onsemi.com/products/audio-video-assp/audiology-dsp-systems/ezairo-8300
http://infocenter.arm.com/help/index.jsp

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Digital signal processing:

« Crochiere, Ronald E. and Rabiner, Lawrence R., Multirate Digital Signal Processing. (Prentice-Hall Signal
Processing Series, 1983)
« Any university-level introductory DSP textbook

Bluetooth®:

o Specification of the Bluetooth System, found at
https://www .bluetooth.org/en-us/specification/adopted-specifications

G.722 encoder/decoder:

o ITU-T G.722 (09/2012)

Google® TensorFlow:

« Google's TensorFlow Lite Documentation and Pete Warden's GitHub repository sample code:
o https://www.tensorflow.org/lite
o https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/hello
world/train/train_hello world model.ipynb
o https://www.tensorflow.org/lite/microcontrollershttps://www.tensorflow.org/lite/microcontrollers
« For understanding the TensorFLow Lite C++ Library:
o https://www.tensorflow.org/lite/microcontrollers/library
« For understanding how the C++ library can be build into your own IDE:
o https://www.digikey.com/en/maker/projects/tinyml-getting-started-with-tensorflow-lite-for-
microcontrollers/c0cdd85015004b098d263400aa294023

7.2 DOCUMENTATION ROADMAP

This section points you to different kinds of documentation, making it easier to get the answers you need.

7.2.1 Overview Documentation

Sources of documentation that provide overviews of Ezairo 8300 from various perspectives are found in the
table "Where to Find Overview Documentation" (Table 3).

www.onsemi.com

45

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.tensorflow.org/lite
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers/library
https://www.digikey.com/en/maker/projects/tinyml-getting-started-with-tensorflow-lite-for-microcontrollers/c0cdd850f5004b098d263400aa294023
https://www.digikey.com/en/maker/projects/tinyml-getting-started-with-tensorflow-lite-for-microcontrollers/c0cdd850f5004b098d263400aa294023

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 3. Where to Find Overview Documentation

Title / Reference

Description

Installed Location

Format

Ezairo 8300 Evaluation and
Development Board User's Guide

This document describes the
configuration and use of the Ezairo
8300 Evaluation and Development
Board.

<sdk_home>\documentation

PDF

Ezairo® 8300 Software
Development Kit Getting Started
Guide

This group of topics provide
installation instructions, defines
prerequisite hardware and software,
and walks you through the steps of
building and running a sample code
application so that you can confirm
that the SDK and evaluation and
development board are functioning
as expected.

Downloaded alongside the installer,
and also found in
<sdk_home>\documentation

HTML
PDF

Integrated Development
Environment User’s Guide

This group of topics describes how to
use the tools provided by the IDE: an
advanced editor, an integrated
source code builder, and an
integrated debugger. The group of
topics includes information about the
ASIP programming tool, and plans
for updating this document include
adding information about the Arm
Cortex-M3 processor toolchain.

<sdk_home>\documentation

HTML
PDF

Ezairo 8300 for Users of Other
Ezairo Products

This group of topics describes the
design and architecture of

Ezairo 8300 to assist people with
programming the chip, and it
provides information about porting
code from Ezairo 7100 to

Ezairo 8300.

<sdk_home>\documentation

HTML
PDF

Datasheet for Ezairo 8300

Technical overview information for
the Ezairo 8300.

https://www.onsemi.com/products/audio-

video-assp/audiology-dsp-systems/ezairo-

8300

HTML

7.2.2 CFX Documentation

Sources of documentation related to the CFX DSP are show in the table "Where to Find CFX Documentation"

(Table 4).

www.onsemi.com

46

https://www.onsemi.com/products/audio-video-assp/audiology-dsp-systems/ezairo-8300
https://www.onsemi.com/products/audio-video-assp/audiology-dsp-systems/ezairo-8300
https://www.onsemi.com/products/audio-video-assp/audiology-dsp-systems/ezairo-8300

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 4. Where to Find CFX Documentation

integrated source code builder, and an integrated
debugger. The group of topics includes information
about the ASIP programming tool, and plans for
updating this document include adding information
about the Arm Cortex-M3 processor toolchain.

Title / Reference Description Installed Location Format
CFXDSP Architecture Manual for This group of topics provides an architecture <sdk_ HTML,
Ezairo 8300 description and instruction set reference for the CFX | home>\documentation PDF
for Ezairo 8300 DSP. The information in this group of
topics provides the software programming basis to
help you develop complex algorithms to process, filter
and enhance digital signals in the most efficient and
compact way. It contains explanatory information for
those who are new to the CF X, and it contains
reference material for experienced users. Once you
are familiar with the functional features described in
the Ezairo 8300 Hardware Reference, you can use
the assembly language documented in this group of
topics to develop algorithms. Further information on
DSP software support libraries, such as building block
libraries of macros to make algorithm development
faster, are described in the Ezairo 8300 Firmware
Reference.
CFXDSP Instruction Set Quick A companion document for the CFXDSP <sdk HTML,
Reference Architecture Manual for Ezairo 8300, this document home;\documentation PDF
serves as a concise programming aid. It is designed
to remind users of the assembly language syntax.
Ezairo 8300 Firmware Reference The firmware provides basic system functionalityand | <sdk__ HTML,
especially the following sections: isolates you from the hardware, making it easier to home>\documentation PDF
. support and maintain your code. This group of topics
» Hardware Definitions (chapter describes the libraries and other firmware features
. g)FX System Library (chapter that assist with the development of your applications.
. g)rogram ROM (chapter 9) The referenced section describes the use of the CFX
« NVMLIB Library (chapter 10) | AESlibrary.
« NVM Memory Layout (chapter
11
. CF)X AES Library (chapter 12)
« Calibration Library (chapter
13)
« CFXDSP Library (chapter 15)
Ezairo 8300 Hardware Reference This group of topics describes all the functional <sdk_ PDF,
especially the following sections: features available on an Ezairo 8300 chip, howthey | home>\documentation HTML
. CFXDigital Signal Processor are used, and how they are configured. This group of
topicsis a good place to start when you are designing
(chapter 3) . real-time implementations of your algorithms or
» DebugPortsand Security lanning a product based on the Ezairo 8300 chi
(chapter 17) P gap P-
Integrated Development Environment | This group of topics describes how to use the tools <sdk_ HTML,
User’s Guide provided by the IDE: an advanced editor, an home>\documentation PDF

www.onsemi.com

47

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 4. Where to Find CFX Documentation (Continued)

the ASIP Programmer. The linker creates a statically
linked EIf executable starting from one or more
relocatable Elf object files and archives. This manual
discusses the command line arguments of the linker
and archiver, the linker optimizations, and the linker
configuration file.

Programmer\
<version>
\win64\doc\manuals

Title / Reference Description Installed Location Format
Communication Protocols for Ezairo This group of topics describes how to use the built-in | <sdk_ PDF,
8300 protocol on the chips based on both the CF X for home>\documentation HTML
especially the following sections: Ezairo 8300 DSP core and the Arm Cortex-M3 core
) o so that a system other than the SDK can
« Basic Protocol Information (in . . . L
communicate with them. This group of topics is
chapter 4) . .o R
. CFXDebug Port Protocol pnmanly.mtended fqr usein S|tuat|o.ns where the user
Commands and Responses wants to mterfaog Wlt.h anothe.r device and cannot
. use the Communication Toolkit support software..
(in chapter 4)
« CFXI2C Debug Port Bridge
(in chapter 5)
Ezairo® 8300 Software Development This group of topics provide installation instructions, Downloaded alongside PDF,
Kit Getting Started Guide defines prerequisite hardware and software, and the installer HTML
especially the following sections: walks you through the steps of building and running a
sample code application so that you can confirm that
* CFX.As.sempIer Sample the SDK and evaluation and development board are
Application (jn chapter 4) functioning as expected.
« CFXC Sample Application (in
chapter 4)
Ezairo 8300 for Users of Other Ezairo This group of topics describes the design and <sdk PDF,
Products architecture of Ezairo 8300 to assist people with home;\documentation HTML
programming the chip, and it provides information
about porting code from Ezairo 7100 to Ezairo 8300.
CoolFlux DSP 24C a20: Assembly This document provides a reference for the assembly | <sdk_home>\cf624c- PDF
Programmer’s Manual language of the CoolFlux DSP 24C a20 DSP core, a20_
and examines the core’s architecture. Itisintended <version>
for programmers who need to analyze the assembly | \doc\manuals
code generated from C source code.
CoolFlux DSP 24C a20: C This document explains how to create audio <sdk_home>\cf624c- PDF
Programmer’s Manual applicationsin C for the CoolFluxDSP 24C a20 DSP | a20_
core, and how to use the core’s accompanying tool <version>
suite. Itisintended for C programmers who have \doc\manuals
good general knowledge of DSP algorithms and
processors.
ASIP Programmer Overview of the This overview summarizes all the documentation <sdk home>\ASIP PDF
Manuals included in the ASIP programmer distribution. Progr;mmer\
<version>
\win64\doc\manuals
Bridge Linker User Manual Explains the use of the Bridge linker, which is part of <sdk_home>\ASIP PDF

www.onsemi.com

48

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 4. Where to Find CFX Documentation (Continued)

Title / Reference Description Installed Location Format
Checkers API Reference The API reference documentation describes the <sdk_home>\ASIP PDF
Documentation functions and data structures available for interacting | Programmer\
with ISSs. <version>
\win64\doc\manuals
Checkers ISS Interface Manual This manual describes the different interface <sdk_home>\AS/P PDF
possibilities of an ISS. This includes memory Programmer\
interfaces, simulation modes, SystemC interface, and | <yersion>
different levels of APIs. \win64\doc\manuals
Checkers Simulator Manual This manual describes the use of a simulator or <sdk_home>\ASIP PDF
debug client. It covers loading of programs, setting Programmer\
breakpoints and watchpoints, profiling, and related <version>
topics. This manual also describes the configuration \win64\doc\manuals
options to build a simulator or debug client. Both the
use and building process are fully integrated in
CHESSDE.
Chess Compiler User Manual Chapter 1 describes the command-line interface to <sdk_home>ASIP PDF
the CHESS compiler. Chapter 3 coversthe CHESS Programmer\
C language extensions (compiler directives). Chapter | «yersion>
4 discusses the various compilation settings. \win64\doc\manuals
ChessDE User Manual This manual describes the CHESSDE development <sdk_home>\AS/P PDF
environment, a graphical user interface to the Programmer\
compiler and simulator/debugger tools. <version>
\win64\doc\manuals
ChessMP User Manual This manual explains the use of CHESSMP, a multi- <sdk_home>ASIP PDF
processor simulation and debug environment. Programmer\
<version>
\win64\doc\manuals
Darts Assembler User Manual This manual covers the command-line interface, the | <sdk_home>\AS/P PDF
syntax of text and data sections, and the use of Programmer\
expressions in assembly source code. <version>
\win64\doc\manuals
Eclipse User Manual This manual describes how to use the Eclipse IDE to <sdk_home>\ASIP PDF
build and debug applications in the context of ASIP Programmer\
Programmer. <version>
\win64\doc\manuals
Free and Open-Source Licensing This documentlists the copyright notices and license | <sdk_home>\AS/P PDF
Notices conditions of the FOSS packages in the distribution. Programmer\
<version>
\win64\doc\manuals
GDB User Manual This manual describes how to set up a GDB <sdk_home>\AS/IP PDF
debugging session in the context of ASIP Programmer\
Programmer. <version>
\win64\doc\manuals

www.onsemi.com

49

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 4. Where to Find CFX Documentation (Continued)

Nmlview Manual

NMLView for analyzing the description of a processor
in nML language, viewing and printing the resulting
instruction tables, and producing related
documentation, which is generated in HTML format.

Programmer\
<version>
\win64\doc\manuals

Title / Reference Description Installed Location Format
GDB User Manual This manual describes how to set up a GDB <sdk_home>\ASIP PDF
debugging session in the context of ASIP Programmer\
Programmer. <version>
\win64\doc\manuals
Installation Manual This manual describes the downloading and the <sdk_home>\AS/P PDF
installation of ASIP Programmer, including licensing Programmer\
and user setup (Chapter 3). <version>
\win64\doc\manuals
JTalk User Manual This document describes using JTalk for chip <sdk_home>\ASIP PDF
debugging. JTalk interfaces one or more debug Programmer\
clients to the target hardware and is responsible for <version>
driving the cable that connects the PC to the \win64\doc\manuals
hardware target. Several cables are supported.
ASIP Designer - ASIP Programmer This manual describes using the interactive tool <sdk_home>\AS/P PDF

7.2.3 Arm Cortex-M3 Processor Documentation

The table "Where to Find Arm Cortex-M3 Processor Documentation" (Table 5) shows where you can find
information about the Arm Cortex-M3 processor that is part of the Ezairo 8300 system.

www.onsemi.com

50

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 5. Where to Find Arm Cortex-M3 Processor Documentation

Title / Reference Description Installed Location Format
Arm® and Thumb®-2 Instruction Set This quick reference card from Arm provides a short- | <sdk_ PDF
Quick Reference Card hand list of instructions for the Arm Cortex-M3 home>\documentation
processor.
Ezairo 8300 Firmware Reference The firmware provides basic system functionality and <sdk_ HTML,
especially the following sections: isolates you from the hardware, making it easier to home>\documentation PDF
" support and maintain your code. This group of topics
« Hardware Definitions . . .)
) describes the libraries and other firmware features
» CMSISLibrary (chapter 6) that assist with the development of your applications
« CMSIS Drivers (chapter 7) ’
« External Drivers (chapter 8)
« NVMLIB Library (chapter 10)
« NVM Memory Layout (chapter
11)
« Calibration Library (chapter
13)
« Arm Cortex-M3 Bootloader
(chapter 14)
« swmTrace Library (chapter
16)
Ezairo 8300 Hardware Reference This group of topics describes all the functional <sdk_ HTML,
especially the following sections: features available on an Ezairo 8300 chip, how they home>\documentation PDF
are used, and how they are configured. This group of
» Arm Cortex-M3 Processor topics is a good place to start when you are designing
(chapter 4) . real-time implementations of your algorithms or
» DebugPortsand Security lanning a product based on the Ezairo 8300 chi
(chapter 17) P 9ap P-
Communication Protocols for Ezairo This group of topics describes how to use the built-in | <sdk_ HTML,
8300 protocol on the chips based on both the CF X for home>\documentation PDF

especially the following sections:

« Basic Protocol Information (in
chapter 4)

« Arm Cortex-M3 Core Debug
Port Protocol Commands and
Responses (in chapter 4)

« Arm Cortex-M3 Debug Port
Protocol Quick Reference (in
appendix C)

Ezairo 8300 DSP core and the Arm Cortex-M3 core
so that a system other than the SDK can
communicate with them. This group of topics is
primarily intended for use in situations where the user
wants to interface with another device and cannot
use the Communication Toolkit support software.

www.onsemi.com

51

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 5. Where to Find Arm Cortex-M3 Processor Documentation (Continued)

Title / Reference Description Installed Location Format
Ezairo® 8300 Software Development | This group of topics provide installation instructions, Downloaded alongside HTML,
Kit Getting Started Guide defines prerequisite hardware and software, and the installer PDF
especially the following sections: walks you through the steps of building and running a
sample code application so that you can confirm that
« Arm Cortex-M3 Processor .
L ; the SDK and evaluation and development board are
j)ample Application (in chapter functioning as expected.
Integrated Development Environment | This group of topics describes how to use the tools <sdk HTML,
User’s Guide provided by the IDE: an advanced editor, an home;\documentation PDF
especially the following sections: integrated source code builder, and an integrated
. Debugging in the Integrated debugger. The group of topics includes information
A about the ASIP programming tool, and plans for
Development Environment . . . L .
updating this document include adding information
(chapter 3) about the Arm Cortex-M3 processor toolchain.
« Using the Arm Cortex-M3
Toolchain (chapter 5)
« Setting Up the Arm Cortex-M3
Core Side (in chapter 6)
Ezairo 8300 for Users of Other Ezairo This group of topics describes the design and <sdk HTML,
Products architecture of Ezairo 8300 to assist people with home;\documentation PDF
programming the chip, and it provides information
about porting code from Ezairo 7100 to Ezairo 8300.
7.2.4 LPDSP32 Documentation
You can find sources of documentation on the LPDSP32 DSP in the table "Where to Find LPDSP32
Documentation" (Table 6).
Table 6. Where to Find LPDSP32 Documentation
Title / Reference Description Installed Location Format
Ezairo 8300 Codec Framework This document provides an overview of the <sdk HTML,
techniques involved when implementing and home;\documentation PDF
integrating code for the audio codecs on the
LPDSP32 processor.
Ezairo 8300 Firmware Reference The firmware provides basic system functionality <sdk_ HTML,
especially the following sections: and isolates you from the hardware, making it home>\documentation PDF
- easier to support and maintain your code. This
« Hardware Definitions
group of topics describes the libraries and other
(chapter 3) firmware features that assist with the development
of your applications.
Ezairo 8300 Hardware Reference This group of topics describes all the functional <sdk_ HTML,
especially the following sections: features available on an Ezairo 8300 chip, how home>\documentation PDF

« LPDSP32 Processor (chapter
8)

they are used, and how they are configured. This
group of topics is a good place to start when you
are designing real-time implementations of your
algorithms or planning a product based on the
Ezairo 8300 chip.

www.onsemi.com

52

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 6. Where to Find LPDSP32 Documentation (Continued)

Programmer’s Manual

syntax.

v3_
<version>\doc\manuals

Title / Reference Description Installed Location Format
Integrated Development Environment | This group of topics describes how to use the tools <sdk __ HTML,
User’s Guide provided by the IDE: an advanced editor, an home>\documentation PDF
integrated source code builder, and an integrated
debugger. The group of topics includes information
about the ASIP programming tool, and plans for
updating this document include adding information
about the Arm Cortex-M3 processor toolchain.
Ezairo® 8300 Software Development | This group of topics provide installation Downloaded alongside the HTML,
Kit Getting Started Guide instructions, defines prerequisite hardware and installer PDF
software, and walks you through the steps of
building and running a sample code application so
that you can confirm that the SDK and evaluation
and development board are functioning as
expected.
Ezairo 8300 for Users of Other Ezairo | This group of topics describes the design and <sdk HTML,
Products architecture of Ezairo 8300 to assist people with home;\documentation PDF
programming the chip, and it provides information
about porting code from Ezairo 7100 to
Ezairo 8300.
LPDSP32-V3 Block Diagram Adiagram for the LPDSP32 core that provides <sdk PDF
information on its inputs, outputs, components and home;
process blocks. \documentation\jpdsp32_
3rd_party_docs
LPDSP32-V3 Hardware Reference Describes the hardware aspects of the LPDSP32- | <sdk PDF
Manual V3 core and its operations to provide an home;
understanding of the core architecture and various \documentation\jpdsp32_
kinds of supported operations. 3rd_party_docs
LPDSP32-V3 Interrupt Support Describes how the LPDSP32 core'sinterruptsare | <sdk PDF
Manual supported. home;
\documentation\lpdsp32_
3rd_party_docs
User IP Programmers Guide for Describes the C application layer used for the <sdk PDF
LPDSP32-V3 LPDSP32 core, the flow generally followed when home;
any application is ported to LPDSP32, various tips \documentation\jpdsp32_
for optimization to make the best use of the 3rd_party_docs
processor and compiler resources, and certain
things the programmers should be aware of when
porting applications. It also provides a few
examples to show the usage of LPDSP32 intrinsic
functions and to give an idea of how certain DSP
functions can be ported to and optimized for
LPDSP32.
LPDSP32-V3 Assembly Adescription of the LPDSP32 core's assembly <sdk_home>\lpdsp32- PDF

www.onsemi.com

53

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 6. Where to Find LPDSP32 Documentation (Continued)

Title / Reference Description Installed Location Format
User Guide IP Programmer for A user guide for the IP Programming, using the <sdk_home>\jpdsp32- PDF
LPDSP32-V3 suite of LPDSP32 tools. v3_
<version>\doc\manuals
Checkers ISS Interface Manual This manual describes the different interface <sdk_home>\ASIP PDF
possibilities of an ISS. This includes memory Programmer\
interfaces, simulation modes, SystemC interface, <version>
and different levels of APIs. \win64\doc\manuals
Checkers Simulator Manual This manual describes the use of a simulator or <sdk_home>\ASIP PDF
debug client. It covers loading of programs, setting | Programmer\
breakpoints and watchpoints, profiling, and related | «yersion>
topics. This manual also describes the \win64\doc\manuals
configuration options to build a simulator or debug
client. Both the use and building process are fully
integrated in CHESSDE.
Chess Compiler User Manual Chapter 1 describes the command-line interface to | <sdk_home>\ASIP PDF
the CHESS compiler. Chapter 3 covers the Programmer\
CHESS C language extensions (compiler <version>
directives). Chapter 4 discusses the various \win64\doc\manuals
compilation settings.
ChessDE User Manual This manual describes the CHESSDE <sdk_home>\ASIP PDF
development environment, a graphical user Programmer\
interface to the compiler and simulator/debugger <version>
tools. \win64\doc\manuals
ChessMP User Manual This manual explains the use of CHESSMP, a <sdk_home>\ASIP PDF
multi-processor simulation and debug Programmer\
environment. <version>
\win64\doc\manuals
Darts Assembler User Manual This manual covers the command-line interface, <sdk_home>\ASIP PDF
the syntax of text and data sections, and the use of | Programmer\
expressions in assembly source code. <version>
\win64\doc\manuals
Eclipse User Manual This manual describes how to use the Eclipse IDE <sdk_home>\ASIP PDF
to build and debug applications in the context of Programmer\
ASIP Programmer. <version>
\win64\doc\manuals
Free and Open-Source Licensing This document lists the copyright notices and <sdk_home>\ASIP PDF
Notices license conditions of the FOSS packages in the Programmer\
distribution. <version>
\win64\doc\manuals
GDB User Manual This manual describes how to set upa GDB <sdk_home>\ASIP PDF
debugging session in the context of ASIP Programmer\
Programmer. <version>
\win64\doc\manuals

www.onsemi.com

54

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 6. Where to Find LPDSP32 Documentation (Continued)

Nmlview Manual

NMLView for analyzing the description of a
processor in nML language, viewing and printing
the resulting instruction tables, and producing
related documentation, which is generated in
HTML format.

Programmer\
<version>
\win64\doc\manuals

Title / Reference Description Installed Location Format
GDB User Manual This manual describes how to set upa GDB <sdk_home>\ASIP PDF
debugging session in the context of ASIP Programmer\
Programmer. <version>
\win64\doc\manuals
Checkers ISS Interface Manual This manual describes the different interface <sdk_home>\ASIP PDF
possibilities of an ISS. This includes memory Programmer\
interfaces, simulation modes, SystemC interface, <version>
and different levels of APIs. \win64\doc\manuals
Installation Manual This manual describes the downloading and the <sdk_home>\ASIP PDF
installation of ASIP Programmer, including Programmer\
licensing and user setup (Chapter 3). <version>
\win64\doc\manuals
JTalk User Manual This document describes using JTalk for chip <sdk_home>\ASIP PDF
debugging. JTalk interfaces one or more debug Programmer\
clients to the target hardware and is responsible for | «yersion>
driving the cable that connects the PC to the \win64\doc\manuals
hardware target. Several cables are supported.
ASIP Designer - ASIP Programmer This manual describes using the interactive tool <sdk_home>\ASIP PDF

7.2.5 HEAR Documentation

Sources of HEAR Configurable Accelerator documentation are found in the table "Where to Find HEAR

Documentation" (Table 7).

Table 7. Where to Find HEAR Documentation

Title / Reference

Description

Installed Location

Format

HEAR Configurable Accelerator
Reference

The HEAR Configurable Accelerator is a microcode-

<sdk

configurable signal processing core. The microcode
is composed of multiple configurable modules which
the application developer can configure and arrange
in a manner suitable for their applications.

This group of topics provides a reference for using
the HEAR Configurable Accelerator and in particular
for configuring the microcode which executes on the
HEAR as part of a developer’s application.

home>\documentation

HTML,
PDF

Ezairo 8300 Hardware Reference
especially the following sections:

« HEAR Configurable
Accelerator (chapter 5)

This group of topics describes all the functional
features available on an Ezairo 8300 chip, how they
are used, and how they are configured. This group of
topicsis a good place to start when you are designing
real-time implementations of your algorithms or
planning a product based on the Ezairo 8300 chip.

<sdk

home>\documentation

HTML,
PDF

www.onsemi.com

55

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

7.2.6 Filter Engine Documentation

The table "Where to Find Filter Engine Documentation" (Table 8) tells how to find information on the Filter

Engine.

Table 8. Where to Find Filter Engine Documentation

Title / Reference

Description

Installed Location

Format

Ezairo 8300 Filter Engine Reference

This group of topics provides an architecture
description and instruction set reference for the Filter
Engine processor. Itisintended for readers who want
to develop programs written for the Filter Engine. It
contains explanatory information for those who are
new to the Filter Engine, and reference material for
experienced users. To learn how to configure the
Filter Engine from the CF X processor, see the
Ezairo 8300 Hardware Reference. Further
information on DSP software support libraries, such
as building block libraries of macros to make
algorithm development faster, is provided in the
Ezairo 8300 Firmware Reference.

<sdk_
home>\documentation

HTML
PDF

Filter Engine for Ezairo 8300
Instruction Set Quick Reference

This page provides the syntax of the Filter Engine
instructions, a brief definition of the operands, and
examples.

<sdk_
home>\documentation

HTML
PDF

Ezairo 8300 Hardware Reference

Section 1 “Filter Engine” on page 1

This group of topics describes all the functional
features available on an Ezairo 8300 chip, how they
are used, and how they are configured. This group of
topicsis a good place to start when you are designing
real-time implementations of your algorithms or
planning a product based on the Ezairo 8300 chip.

<sdk_
home>\documentation

HTML
PDF

7.2.7 Neural Network Accelerator Documentation

Sources of documentation on the Neural Network Accelerator are show in the table "Where to Find Neural
Network Accelerator Documentation" (Table 9).

Table 9. Where to Find Neural Network Accelerator Documentation

« Neural Network Accelerator
(chapter 7)

are used, and how they are configured. This group of
topicsis a good place to start when you are designing
real-time implementations of your algorithms or
planning a product based on the Ezairo 8300 chip.

Title / Reference Description Installed Location Format
Deep Learning for Ezairo 8300 This group of topics provides an introductiontodeep | <sdk__ HTML,
Programming Guide learning concepts, and both high-level and low-level home>\documentation PDF

instructions for developing deep learning applications

with the Ezairo 8300 System-on-Chip. Information is

provided regarding processor selection and multiple

workflow methodologies, which can be tailored to the

user’sindividual resources and the project’s desired

outcomes.
Ezairo 8300 Hardware Reference This group of topics describes all the functional <sdk HTML,
especially the following sections: features available on an Ezairo 8300 chip, how they home;\documentation PDF

www.onsemi.com

56

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

7.2.8 Documentation for Other Hardware Elements

Consult the table "Where to Find Documentation for Other Hardware Elements" (Table 10) for sources of
information on other hardware elements of Ezairo 8300.

Table 10. Where to Find Documentation for Other Hardware Elements

Title / Reference

Description

Ezairo 8300 Firmware Reference
especially the following sections:

« Hardware Abstraction Layer
(chapter 3)

The firmware provides basic system functionality and
isolates you from the hardware, making it easier to
support and maintain your code. This group of topics
describes the libraries and other firmware features
that assist with the development of your applications.

Ezairo 8300 Hardware Reference

This group of topics describes all the functional
features available on an Ezairo 8300 chip, how they
are used, and how they are configured. This group of
topicsis a good place to start when you are designing
real-time implementations of your algorithms or
planning a product based on the Ezairo 8300 chip.

Installed Location Format
<sdk_ HTML,
home>\documentation PDF
<sdk_ HTML,
home>\documentation PDF

7.2.9 NVM Support Documentation

Consult the table "Where to Find NVM Support Documentation" (Table 11) to find documentation on Non-

Volatile Memory support.

Table 11. Where to Find NVM Support Documentation

« NVMLIB Library (chapter 10)
« NVM Memory Layout (chapter
11)

support and maintain your code. This group of topics
describes the libraries and other firmware features
that assist with the development of your applications.

Title / Reference Description Installed Location Format
Ezairo 8300 Firmware Reference The firmware provides basic system functionalityand | <sdk__ HTML,
especially the following sections: isolates you from the hardware, making it easier to home>\documentation PDF

7.2.10 Communications Support Documentation

Documentation sources for communications support can be found in the table

Support Documentation" (Table 12).

"Where to Find Communications

www.onsemi.com

57

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Table 12. Where to Find Communications Support Documentation

Title / Reference

Description

Installed Location

Format

Communication Protocols for Ezairo
8300

This group of topics describes how to
use the built-in protocol on the chips
based on both the CF X for

Ezairo 8300 DSP core and the Arm
Cortex-M3 core so that a system
other than the SDK can communicate
with them. This group of topics is
primarily intended for use in situations
where the user wants to interface
with another device and cannot use
the Communication Toolkit support
software.

<sdk_home>\documentation

HTML
PDF

Communication Toolkit API
Reference

This manual provides a complete
description of the software interface
that you use to access the
Communication Toolkit (CTK) from
your software.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

HTML
PDF

Communication Toolkit
Programmer's Guide

This manual provides the information
that you need to develop software
that uses the Communication Toolkit
to communicate with onsemi chips in
the SignaKlara™ technology family.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

HTML
PDF

Implementing a CTK
Communication Module

This specialized programming paper
describes how to add new
communication modules to the CTK
to support new communication
interfaces.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

HTML
PDF

Using the CTK on Windows CE

Information on how to develop
WiIndows CE applications that use
the CTK API to communicate with
onsemi DSP systems.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

PDF

NOAH)Iink Analog Audio Streaming
with Ezairo Products

This specialized programming paper
explains how to use the NOAHIink
Hearing Aid interface device to
stream analog audio over onsemi
Ezairo products.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

PDF

NOAHIink Analog Audio Streaming
with Orela 4500

This specialized programming paper
explains how to use the NOAHIink
Hearing Aid interface device to
stream analog audio over onsemi
Orela products.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

PDF

NOAHIink™ Login Enhancements

This specialized programming paper
explains how to modify the NOAHIlink
drivers to support the loading of new
protocol firmware without resetting
the NOAHIink device.

C:\Program Files (x86)\Common
Files\SignaKlara\C TK\documentation\ctk

HTML
PDF

www.onsemi.com

58

onsemi Confidential

Ezairo 8300 Software Development Kit Getting Started Guide

Ezairo and SignaKlara are either trademarks or registered trademarks of SCILLC. All other brand names and product names appearing in this document are trademarks of their respective
holders.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi owns the
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in
any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the “board”) is not a finished product and is as such not available for sale to consumers. The board is only
intended for research, development, demonstration and evaluation purposes and should as such only be used in laboratory/development areas by persons with an engineering/technical
training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and
safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

The board is delivered “AS IS” and without warranty of any kind including, but not limited to, that the board is production-worthy, that the functions contained in the board will meet your
requirements, or that the operation of the board will be uninterrupted or error free. onsemi expressly disclaims all warranties, express, implied or otherwise, including without limitation,
warranties of fitness for a particular purpose and non-infringement of intellectual property rights.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems
that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design
information or advice, quality characterization, reliability data or other services provided by onsemi shall not constitute any representation or warranty by onsemi, and no additional
obligations or liabilities shall arise from onsemi having provided such information or services.

The boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classificationina
foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the board for any such unintended or unauthorized application, you shall
indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent
regarding the design or manufacture of the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC,
CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING — This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by onsemi to be a finished
end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to
part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio
communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.
LIMITATIONS OF LIABILITY: onsemi shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay,
loss of profits or goodwill, arising out of or in connection with the board, even if onsemi is advised of the possibility of such damages. In no event shall onsemi’s aggregate liability from any

obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

For more information and documentation, please visit www.onsemi.com.

PUBLICATION ORDERING

INFORMATION

LITERATURE FULFILLMENT: N. American Technical Support: onsemi Website: www.onsemi.com

Literature Distribution Center for onsemi 800-282-9855 Toll Free USA/Canada

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Order Literature: http://www.onsemi.com/orderlit

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Phone: 421 33 790 2910 For additional information, please contact your local Sales

Email: orderlit@onsemi.com Representative
R —IIII—————

M-20865-013

www.onsemi.com

59

https://www.onsemi.com/site/pdf/Patent-Marking.pdf
https://www.onsemi.com/

	Ezairo® 8300 Software Development Kit Getting Started Guide
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Conventions
	1.4 Further Reading

	2. Overview
	2.1 High-Level Overview
	2.2 Features

	3. Design Information
	3.1 Programming the Ezairo 8300 System
	3.1.1 Partitioning Algorithms
	3.1.2 Other Design Considerations

	3.2 Data Flow

	4. Connecting Hardware and Installing Software
	4.1 Connecting the Hardware
	4.1.1 Hardware Prerequisites
	4.1.2 Connecting the Board

	4.2 Software Prerequisites
	4.3 Installing the Software
	4.3.1 Using the ide.json File

	4.4 Preparing the System to Build Source Code with the ASIP Designer toolchain

	5. Introduction to Sample Applications
	5.1 Accessing the Sample Applications
	5.1.1 IDE Method #1: Importing sample applications through the Sample Code Explorer
	5.1.2 IDE Method #2: Creating a new sample from a template
	5.1.3 IDE Method #3: Importing a sample code application as an existing project

	5.2 Code Structure and General Information
	5.2.1 Shared Data Elements

	6. Working with Sample Applications
	6.1 Starting the Ezairo 8300 SDK
	6.2 CFX Assembler Sample Application
	6.2.1 Importing and Building the CFX Assembler Sample Project
	6.2.2 Debugging the CFX Sample Code
	6.2.2.1 Changing CTK Configuration for CFX Debugging
	6.2.2.2 Debugging the CFX with SEGGER J-Link

	6.3 CFX C Sample Application
	6.3.1 Importing and Building the CFX C Sample Project
	6.3.2 Debugging CFX C Sample Code
	6.3.3 CFX Debug Troubleshooting

	6.4 Arm Cortex-M3 Processor Sample Application
	6.4.1 Importing and Building an Arm Cortex-M3 Processor Sample Project
	6.4.2 Debugging Arm Cortex-M3 Processor Sample Code

	7. More Information
	7.1 Where to Find Documentation
	7.1.1 Finding HTML Documentation
	7.1.2 Finding PDF Documentation
	7.1.3 Finding the Information You Need
	7.1.4 Publicly-Available Documentation

	7.2 Documentation Roadmap
	7.2.1 Overview Documentation
	7.2.2 CFX Documentation
	7.2.3 Arm Cortex-M3 Processor Documentation
	7.2.4 LPDSP32 Documentation
	7.2.5 HEAR Documentation
	7.2.6 Filter Engine Documentation
	7.2.7 Neural Network Accelerator Documentation
	7.2.8 Documentation for Other Hardware Elements
	7.2.9 NVM Support Documentation
	7.2.10 Communications Support Documentation

